{"title":"Pflacco:用 Python 对连续和受限优化问题进行基于特征的景观分析","authors":"Raphael Patrick Prager, Heike Trautmann","doi":"10.1162/evco_a_00341","DOIUrl":null,"url":null,"abstract":"<p><p>The herein proposed Python package pflacco provides a set of numerical features to characterize single-objective continuous and constrained optimization problems. Thereby, pflacco addresses two major challenges in the area of optimization. Firstly, it provides the means to develop an understanding of a given problem instance, which is crucial for designing, selecting, or configuring optimization algorithms in general. Secondly, these numerical features can be utilized in the research streams of automated algorithm selection and configuration. While the majority of these landscape features are already available in the R package flacco, our Python implementation offers these tools to an even wider audience and thereby promotes research interests and novel avenues in the area of optimization.</p>","PeriodicalId":50470,"journal":{"name":"Evolutionary Computation","volume":" ","pages":"211-216"},"PeriodicalIF":4.6000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pflacco: Feature-Based Landscape Analysis of Continuous and Constrained Optimization Problems in Python.\",\"authors\":\"Raphael Patrick Prager, Heike Trautmann\",\"doi\":\"10.1162/evco_a_00341\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The herein proposed Python package pflacco provides a set of numerical features to characterize single-objective continuous and constrained optimization problems. Thereby, pflacco addresses two major challenges in the area of optimization. Firstly, it provides the means to develop an understanding of a given problem instance, which is crucial for designing, selecting, or configuring optimization algorithms in general. Secondly, these numerical features can be utilized in the research streams of automated algorithm selection and configuration. While the majority of these landscape features are already available in the R package flacco, our Python implementation offers these tools to an even wider audience and thereby promotes research interests and novel avenues in the area of optimization.</p>\",\"PeriodicalId\":50470,\"journal\":{\"name\":\"Evolutionary Computation\",\"volume\":\" \",\"pages\":\"211-216\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Evolutionary Computation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1162/evco_a_00341\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolutionary Computation","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1162/evco_a_00341","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Pflacco: Feature-Based Landscape Analysis of Continuous and Constrained Optimization Problems in Python.
The herein proposed Python package pflacco provides a set of numerical features to characterize single-objective continuous and constrained optimization problems. Thereby, pflacco addresses two major challenges in the area of optimization. Firstly, it provides the means to develop an understanding of a given problem instance, which is crucial for designing, selecting, or configuring optimization algorithms in general. Secondly, these numerical features can be utilized in the research streams of automated algorithm selection and configuration. While the majority of these landscape features are already available in the R package flacco, our Python implementation offers these tools to an even wider audience and thereby promotes research interests and novel avenues in the area of optimization.
期刊介绍:
Evolutionary Computation is a leading journal in its field. It provides an international forum for facilitating and enhancing the exchange of information among researchers involved in both the theoretical and practical aspects of computational systems drawing their inspiration from nature, with particular emphasis on evolutionary models of computation such as genetic algorithms, evolutionary strategies, classifier systems, evolutionary programming, and genetic programming. It welcomes articles from related fields such as swarm intelligence (e.g. Ant Colony Optimization and Particle Swarm Optimization), and other nature-inspired computation paradigms (e.g. Artificial Immune Systems). As well as publishing articles describing theoretical and/or experimental work, the journal also welcomes application-focused papers describing breakthrough results in an application domain or methodological papers where the specificities of the real-world problem led to significant algorithmic improvements that could possibly be generalized to other areas.