{"title":"莱因衣藻缺乏光保护性qE时的补偿机制特征。","authors":"Michael Cantrell, Maxwell A Ware, Graham Peers","doi":"10.1007/s11120-023-01037-7","DOIUrl":null,"url":null,"abstract":"<p><p>Rapid fluctuations in the quantity and quality of natural light expose photosynthetic organisms to conditions when the capacity to utilize absorbed quanta is insufficient. These conditions can result in the production of reactive oxygen species and photooxidative damage. Non-photochemical quenching (NPQ) and alternative electron transport are the two most prominent mechanisms which synergistically function to minimize the overreduction of photosystems. In the green alga Chlamydomonas reinhardtii, the stress-related light-harvesting complex (LHCSR) is a required component for the rapid induction and relaxation of NPQ in the light-harvesting antenna. Here, we use simultaneous chlorophyll fluorescence and oxygen exchange measurements to characterize the acclimation of the Chlamydomonas LHCSR-less mutant (npq4lhcsr1) to saturating light conditions. We demonstrate that, in the absence of NPQ, Chlamydomonas does not acclimate to sinusoidal light through increased light-dependent oxygen consumption. We also show that the npq4lhcsr1 mutant has an increased sink capacity downstream of PSI and this energy flow is likely facilitated by cyclic electron transport. Furthermore, we show that the timing of additions of mitochondrial inhibitors has a major influence on plastid/mitochondrial coupling experiments.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterizing compensatory mechanisms in the absence of photoprotective qE in Chlamydomonas reinhardtii.\",\"authors\":\"Michael Cantrell, Maxwell A Ware, Graham Peers\",\"doi\":\"10.1007/s11120-023-01037-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Rapid fluctuations in the quantity and quality of natural light expose photosynthetic organisms to conditions when the capacity to utilize absorbed quanta is insufficient. These conditions can result in the production of reactive oxygen species and photooxidative damage. Non-photochemical quenching (NPQ) and alternative electron transport are the two most prominent mechanisms which synergistically function to minimize the overreduction of photosystems. In the green alga Chlamydomonas reinhardtii, the stress-related light-harvesting complex (LHCSR) is a required component for the rapid induction and relaxation of NPQ in the light-harvesting antenna. Here, we use simultaneous chlorophyll fluorescence and oxygen exchange measurements to characterize the acclimation of the Chlamydomonas LHCSR-less mutant (npq4lhcsr1) to saturating light conditions. We demonstrate that, in the absence of NPQ, Chlamydomonas does not acclimate to sinusoidal light through increased light-dependent oxygen consumption. We also show that the npq4lhcsr1 mutant has an increased sink capacity downstream of PSI and this energy flow is likely facilitated by cyclic electron transport. Furthermore, we show that the timing of additions of mitochondrial inhibitors has a major influence on plastid/mitochondrial coupling experiments.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s11120-023-01037-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/7/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11120-023-01037-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/7/24 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Characterizing compensatory mechanisms in the absence of photoprotective qE in Chlamydomonas reinhardtii.
Rapid fluctuations in the quantity and quality of natural light expose photosynthetic organisms to conditions when the capacity to utilize absorbed quanta is insufficient. These conditions can result in the production of reactive oxygen species and photooxidative damage. Non-photochemical quenching (NPQ) and alternative electron transport are the two most prominent mechanisms which synergistically function to minimize the overreduction of photosystems. In the green alga Chlamydomonas reinhardtii, the stress-related light-harvesting complex (LHCSR) is a required component for the rapid induction and relaxation of NPQ in the light-harvesting antenna. Here, we use simultaneous chlorophyll fluorescence and oxygen exchange measurements to characterize the acclimation of the Chlamydomonas LHCSR-less mutant (npq4lhcsr1) to saturating light conditions. We demonstrate that, in the absence of NPQ, Chlamydomonas does not acclimate to sinusoidal light through increased light-dependent oxygen consumption. We also show that the npq4lhcsr1 mutant has an increased sink capacity downstream of PSI and this energy flow is likely facilitated by cyclic electron transport. Furthermore, we show that the timing of additions of mitochondrial inhibitors has a major influence on plastid/mitochondrial coupling experiments.