Peter J Talling, Sophie Hage, Megan L Baker, Thomas S Bianchi, Robert G Hilton, Katherine L Maier
{"title":"全球浊流泵及其对有机碳循环的影响。","authors":"Peter J Talling, Sophie Hage, Megan L Baker, Thomas S Bianchi, Robert G Hilton, Katherine L Maier","doi":"10.1146/annurev-marine-032223-103626","DOIUrl":null,"url":null,"abstract":"<p><p>Submarine turbidity currents form the largest sediment accumulations on Earth, raising the question of their role in global carbon cycles. It was previously inferred that terrestrial organic carbon was primarily incinerated on shelves and that most turbidity current systems are presently inactive. Turbidity currents were thus not considered in global carbon cycles, and the burial efficiency of global terrestrial organic carbon was considered low to moderate (∼10-44%). However, recent work has shown that burial of terrestrial organic carbon by turbidity currents is highly efficient (>60-100%) in a range of settings and that flows occur more frequently than once thought, although they were far more active at sea-level lowstands. This leads to revised global estimates for mass flux (∼62-90 Mt C/year) and burial efficiency (∼31-45%) of terrestrial organic carbon in marine sediments. Greatly increased burial fluxes during sea-level lowstands are also likely underestimated; thus, organic carbon cycling by turbidity currents could play a role in long-term changes in atmospheric CO<sub>2</sub> and climate.</p>","PeriodicalId":55508,"journal":{"name":"Annual Review of Marine Science","volume":null,"pages":null},"PeriodicalIF":14.3000,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Global Turbidity Current Pump and Its Implications for Organic Carbon Cycling.\",\"authors\":\"Peter J Talling, Sophie Hage, Megan L Baker, Thomas S Bianchi, Robert G Hilton, Katherine L Maier\",\"doi\":\"10.1146/annurev-marine-032223-103626\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Submarine turbidity currents form the largest sediment accumulations on Earth, raising the question of their role in global carbon cycles. It was previously inferred that terrestrial organic carbon was primarily incinerated on shelves and that most turbidity current systems are presently inactive. Turbidity currents were thus not considered in global carbon cycles, and the burial efficiency of global terrestrial organic carbon was considered low to moderate (∼10-44%). However, recent work has shown that burial of terrestrial organic carbon by turbidity currents is highly efficient (>60-100%) in a range of settings and that flows occur more frequently than once thought, although they were far more active at sea-level lowstands. This leads to revised global estimates for mass flux (∼62-90 Mt C/year) and burial efficiency (∼31-45%) of terrestrial organic carbon in marine sediments. Greatly increased burial fluxes during sea-level lowstands are also likely underestimated; thus, organic carbon cycling by turbidity currents could play a role in long-term changes in atmospheric CO<sub>2</sub> and climate.</p>\",\"PeriodicalId\":55508,\"journal\":{\"name\":\"Annual Review of Marine Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":14.3000,\"publicationDate\":\"2024-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Review of Marine Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-marine-032223-103626\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/7/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Marine Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1146/annurev-marine-032223-103626","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/7/24 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
The Global Turbidity Current Pump and Its Implications for Organic Carbon Cycling.
Submarine turbidity currents form the largest sediment accumulations on Earth, raising the question of their role in global carbon cycles. It was previously inferred that terrestrial organic carbon was primarily incinerated on shelves and that most turbidity current systems are presently inactive. Turbidity currents were thus not considered in global carbon cycles, and the burial efficiency of global terrestrial organic carbon was considered low to moderate (∼10-44%). However, recent work has shown that burial of terrestrial organic carbon by turbidity currents is highly efficient (>60-100%) in a range of settings and that flows occur more frequently than once thought, although they were far more active at sea-level lowstands. This leads to revised global estimates for mass flux (∼62-90 Mt C/year) and burial efficiency (∼31-45%) of terrestrial organic carbon in marine sediments. Greatly increased burial fluxes during sea-level lowstands are also likely underestimated; thus, organic carbon cycling by turbidity currents could play a role in long-term changes in atmospheric CO2 and climate.
期刊介绍:
The Annual Review of Marine Science, published since 2009, offers a comprehensive overview of the field. It covers various disciplines, including coastal and blue water oceanography (biological, chemical, geological, and physical), ecology, conservation, and technological advancements related to the marine environment. The journal's transition from gated to open access through Annual Reviews' Subscribe to Open program ensures that all articles are available under a CC BY license, promoting wider accessibility and dissemination of knowledge.