Sahil Thakur, Linh Le Dinh, Raghavan Lavanya, Ten Cheer Quek, Yong Liu, Ching-Yu Cheng
{"title":"人工智能在青光眼进展预测中的应用。","authors":"Sahil Thakur, Linh Le Dinh, Raghavan Lavanya, Ten Cheer Quek, Yong Liu, Ching-Yu Cheng","doi":"10.4103/tjo.TJO-D-23-00022","DOIUrl":null,"url":null,"abstract":"<p><p>Artificial intelligence (AI) has been widely used in ophthalmology for disease detection and monitoring progression. For glaucoma research, AI has been used to understand progression patterns and forecast disease trajectory based on analysis of clinical and imaging data. Techniques such as machine learning, natural language processing, and deep learning have been employed for this purpose. The results from studies using AI for forecasting glaucoma progression however vary considerably due to dataset constraints, lack of a standard progression definition and differences in methodology and approach. While glaucoma detection and screening have been the focus of most research that has been published in the last few years, in this narrative review we focus on studies that specifically address glaucoma progression. We also summarize the current evidence, highlight studies that have translational potential, and provide suggestions on how future research that addresses glaucoma progression can be improved.</p>","PeriodicalId":44978,"journal":{"name":"Taiwan Journal of Ophthalmology","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/a3/0f/TJO-13-168.PMC10361424.pdf","citationCount":"1","resultStr":"{\"title\":\"Use of artificial intelligence in forecasting glaucoma progression.\",\"authors\":\"Sahil Thakur, Linh Le Dinh, Raghavan Lavanya, Ten Cheer Quek, Yong Liu, Ching-Yu Cheng\",\"doi\":\"10.4103/tjo.TJO-D-23-00022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Artificial intelligence (AI) has been widely used in ophthalmology for disease detection and monitoring progression. For glaucoma research, AI has been used to understand progression patterns and forecast disease trajectory based on analysis of clinical and imaging data. Techniques such as machine learning, natural language processing, and deep learning have been employed for this purpose. The results from studies using AI for forecasting glaucoma progression however vary considerably due to dataset constraints, lack of a standard progression definition and differences in methodology and approach. While glaucoma detection and screening have been the focus of most research that has been published in the last few years, in this narrative review we focus on studies that specifically address glaucoma progression. We also summarize the current evidence, highlight studies that have translational potential, and provide suggestions on how future research that addresses glaucoma progression can be improved.</p>\",\"PeriodicalId\":44978,\"journal\":{\"name\":\"Taiwan Journal of Ophthalmology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/a3/0f/TJO-13-168.PMC10361424.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Taiwan Journal of Ophthalmology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4103/tjo.TJO-D-23-00022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"OPHTHALMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Taiwan Journal of Ophthalmology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/tjo.TJO-D-23-00022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
Use of artificial intelligence in forecasting glaucoma progression.
Artificial intelligence (AI) has been widely used in ophthalmology for disease detection and monitoring progression. For glaucoma research, AI has been used to understand progression patterns and forecast disease trajectory based on analysis of clinical and imaging data. Techniques such as machine learning, natural language processing, and deep learning have been employed for this purpose. The results from studies using AI for forecasting glaucoma progression however vary considerably due to dataset constraints, lack of a standard progression definition and differences in methodology and approach. While glaucoma detection and screening have been the focus of most research that has been published in the last few years, in this narrative review we focus on studies that specifically address glaucoma progression. We also summarize the current evidence, highlight studies that have translational potential, and provide suggestions on how future research that addresses glaucoma progression can be improved.