{"title":"深度学习的进展:从诊断到治疗。","authors":"Tianqi Huang, Longfei Ma, Boyu Zhang, Hongen Liao","doi":"10.5582/bst.2023.01148","DOIUrl":null,"url":null,"abstract":"<p><p>Deep learning has brought about a revolution in the field of medical diagnosis and treatment. The use of deep learning in healthcare has grown exponentially in recent years, achieving physician-level accuracy in various diagnostic tasks and supporting applications such as electronic health records and clinical voice assistants. The emergence of medical foundation models, as a new approach to deep learning, has greatly improved the reasoning ability of machines. Characterized by large training datasets, context awareness, and multi-domain applications, medical foundation models can integrate various forms of medical data to provide user-friendly outputs based on a patien's information. Medical foundation models have the potential to integrate current diagnostic and treatment systems, providing the ability to understand multi-modal diagnostic information and real-time reasoning ability in complex surgical scenarios. Future research on foundation model-based deep learning methods will focus more on the collaboration between physicians and machines. On the one hand, developing new deep learning methods will reduce the repetitive labor of physicians and compensate for shortcomings in their diagnostic and treatment capabilities. On the other hand, physicians need to embrace new deep learning technologies, comprehend the principles and technical risks of deep learning methods, and master the procedures for integrating them into clinical practice. Ultimately, the integration of artificial intelligence analysis with human decision-making will facilitate accurate personalized medical care and enhance the efficiency of physicians.</p>","PeriodicalId":8957,"journal":{"name":"Bioscience trends","volume":"17 3","pages":"190-192"},"PeriodicalIF":5.7000,"publicationDate":"2023-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advances in deep learning: From diagnosis to treatment.\",\"authors\":\"Tianqi Huang, Longfei Ma, Boyu Zhang, Hongen Liao\",\"doi\":\"10.5582/bst.2023.01148\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Deep learning has brought about a revolution in the field of medical diagnosis and treatment. The use of deep learning in healthcare has grown exponentially in recent years, achieving physician-level accuracy in various diagnostic tasks and supporting applications such as electronic health records and clinical voice assistants. The emergence of medical foundation models, as a new approach to deep learning, has greatly improved the reasoning ability of machines. Characterized by large training datasets, context awareness, and multi-domain applications, medical foundation models can integrate various forms of medical data to provide user-friendly outputs based on a patien's information. Medical foundation models have the potential to integrate current diagnostic and treatment systems, providing the ability to understand multi-modal diagnostic information and real-time reasoning ability in complex surgical scenarios. Future research on foundation model-based deep learning methods will focus more on the collaboration between physicians and machines. On the one hand, developing new deep learning methods will reduce the repetitive labor of physicians and compensate for shortcomings in their diagnostic and treatment capabilities. On the other hand, physicians need to embrace new deep learning technologies, comprehend the principles and technical risks of deep learning methods, and master the procedures for integrating them into clinical practice. Ultimately, the integration of artificial intelligence analysis with human decision-making will facilitate accurate personalized medical care and enhance the efficiency of physicians.</p>\",\"PeriodicalId\":8957,\"journal\":{\"name\":\"Bioscience trends\",\"volume\":\"17 3\",\"pages\":\"190-192\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2023-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioscience trends\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.5582/bst.2023.01148\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioscience trends","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.5582/bst.2023.01148","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
Advances in deep learning: From diagnosis to treatment.
Deep learning has brought about a revolution in the field of medical diagnosis and treatment. The use of deep learning in healthcare has grown exponentially in recent years, achieving physician-level accuracy in various diagnostic tasks and supporting applications such as electronic health records and clinical voice assistants. The emergence of medical foundation models, as a new approach to deep learning, has greatly improved the reasoning ability of machines. Characterized by large training datasets, context awareness, and multi-domain applications, medical foundation models can integrate various forms of medical data to provide user-friendly outputs based on a patien's information. Medical foundation models have the potential to integrate current diagnostic and treatment systems, providing the ability to understand multi-modal diagnostic information and real-time reasoning ability in complex surgical scenarios. Future research on foundation model-based deep learning methods will focus more on the collaboration between physicians and machines. On the one hand, developing new deep learning methods will reduce the repetitive labor of physicians and compensate for shortcomings in their diagnostic and treatment capabilities. On the other hand, physicians need to embrace new deep learning technologies, comprehend the principles and technical risks of deep learning methods, and master the procedures for integrating them into clinical practice. Ultimately, the integration of artificial intelligence analysis with human decision-making will facilitate accurate personalized medical care and enhance the efficiency of physicians.
期刊介绍:
BioScience Trends (Print ISSN 1881-7815, Online ISSN 1881-7823) is an international peer-reviewed journal. BioScience Trends devotes to publishing the latest and most exciting advances in scientific research. Articles cover fields of life science such as biochemistry, molecular biology, clinical research, public health, medical care system, and social science in order to encourage cooperation and exchange among scientists and clinical researchers.