{"title":"补充合成菌对外源性肥胖儿童和青少年肠道菌群组成的影响:(probability -2试验)。","authors":"Gonca Kilic Yildirim, Meltem Dinleyici, Yvan Vandenplas, Ener Cagri Dinleyici","doi":"10.1186/s13099-023-00563-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Gut microbiota manipulation may be a potential therapeutic target to reduce host energy storage. There is limited information about the effects of probiotics/synbiotics on intestinal microbiota composition in children and adolescents with obesity. The objective of this randomized double-blind placebo-controlled trial was to test the effects of a multispecies synbiotic on intestinal microbiota composition in children and adolescents with exogenous obesity.</p><p><strong>Method: </strong>Children with exogenous obesity were managed with a standard diet and increased physical activity and were randomly allocated into two groups at a ratio of 1:1; the 1st group received synbiotic supplementation (probiotic mixture including Lactobacillus acidophilus, Lacticaseibacillus. rhamnosus, Bifidobacterium bifidum, Bifidobacterium longum, Enterococcus faecium (total 2.5 × 10<sup>9</sup> CFU/sachet) and fructo-oligosaccharides (FOS; 625 mg/sachet) for 12 weeks; the 2nd group received placebo once daily for 12 weeks. Fecal samples were obtained before and at the end of the 12-week intervention to characterize the changes in the gut microbiota composition. Detailed metagenomic and bioinformatics analyses were performed.</p><p><strong>Results: </strong>Before the intervention, there were no significant differences in alpha diversity indicators between the synbiotic and placebo groups. After 12 weeks of intervention, the observed taxonomic units and Chao 1 were lower in the synbiotic group than at baseline (p < 0.001 for both). No difference for alpha diversity indicators was observed in the placebo group between baseline and 12 weeks of intervention. At the phylum level, the intestinal microbiota composition of the study groups was similar at baseline. The major phyla in the synbiotic group were Firmicutes (66.7%) and Bacteroidetes (18.8%). In the synbiotic group, the Bacteroidetes phylum was higher after 12 weeks than at baseline (24.0% vs. 18.8%, p < 0.01). In the synbiotic group, the Firmicutes/Bacteroidetes ratio was 3.54 at baseline and 2.75 at 12 weeks of intervention (p < 0.05). In the placebo group, the Firmicutes/Bacteroidetes ratio was 4.70 at baseline and 3.54 at 12 weeks of intervention (p < 0.05). After 12 weeks of intervention, the Firmicutes/Bacteroidetes ratio was also lower in the synbiotic group than in the placebo group (p < 0.05). In the synbiotic group, compared with the baseline, we observed a statistically significant increase in the genera Prevotella (5.28-14.4%, p < 0.001) and Dialister (9.68-13.4%; p < 0.05). Compared to baseline, we observed a statistically significant increase in the genera Prevotella (6.4-12.4%, p < 0.01) and Oscillospira (4.95% vs. 5.70%, p < 0.001) in the placebo group. In the synbiotic group, at the end of the intervention, an increase in Prevotella, Coprococcus, Lachnospiraceae (at the genus level) and Prevotella copri, Coprococcus eutactus, Ruminococcus spp. at the species level compared to baseline (predominance of Eubacterium dolichum, Lactobacillus ruminis, Clostridium ramosum, Bulleidia moorei) was observed. At the end of the 12th week of the study, when the synbiotic and placebo groups were compared, Bacteroides eggerthi species were dominant in the placebo group, while Collinsella stercoris species were dominant in the synbiotic group.</p><p><strong>Conclusion: </strong>This study is the first pediatric obesity study to show that a synbiotic treatment is associated with both changes intestinal microbiota composition and decreases in BMI. Trial identifier: NCT05162209 (www.</p><p><strong>Clinicaltrials: </strong>gov).</p>","PeriodicalId":12833,"journal":{"name":"Gut Pathogens","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10360342/pdf/","citationCount":"1","resultStr":"{\"title\":\"Effects of synbiotic supplementation on intestinal microbiota composition in children and adolescents with exogenous obesity: (Probesity-2 trial).\",\"authors\":\"Gonca Kilic Yildirim, Meltem Dinleyici, Yvan Vandenplas, Ener Cagri Dinleyici\",\"doi\":\"10.1186/s13099-023-00563-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Gut microbiota manipulation may be a potential therapeutic target to reduce host energy storage. There is limited information about the effects of probiotics/synbiotics on intestinal microbiota composition in children and adolescents with obesity. The objective of this randomized double-blind placebo-controlled trial was to test the effects of a multispecies synbiotic on intestinal microbiota composition in children and adolescents with exogenous obesity.</p><p><strong>Method: </strong>Children with exogenous obesity were managed with a standard diet and increased physical activity and were randomly allocated into two groups at a ratio of 1:1; the 1st group received synbiotic supplementation (probiotic mixture including Lactobacillus acidophilus, Lacticaseibacillus. rhamnosus, Bifidobacterium bifidum, Bifidobacterium longum, Enterococcus faecium (total 2.5 × 10<sup>9</sup> CFU/sachet) and fructo-oligosaccharides (FOS; 625 mg/sachet) for 12 weeks; the 2nd group received placebo once daily for 12 weeks. Fecal samples were obtained before and at the end of the 12-week intervention to characterize the changes in the gut microbiota composition. Detailed metagenomic and bioinformatics analyses were performed.</p><p><strong>Results: </strong>Before the intervention, there were no significant differences in alpha diversity indicators between the synbiotic and placebo groups. After 12 weeks of intervention, the observed taxonomic units and Chao 1 were lower in the synbiotic group than at baseline (p < 0.001 for both). No difference for alpha diversity indicators was observed in the placebo group between baseline and 12 weeks of intervention. At the phylum level, the intestinal microbiota composition of the study groups was similar at baseline. The major phyla in the synbiotic group were Firmicutes (66.7%) and Bacteroidetes (18.8%). In the synbiotic group, the Bacteroidetes phylum was higher after 12 weeks than at baseline (24.0% vs. 18.8%, p < 0.01). In the synbiotic group, the Firmicutes/Bacteroidetes ratio was 3.54 at baseline and 2.75 at 12 weeks of intervention (p < 0.05). In the placebo group, the Firmicutes/Bacteroidetes ratio was 4.70 at baseline and 3.54 at 12 weeks of intervention (p < 0.05). After 12 weeks of intervention, the Firmicutes/Bacteroidetes ratio was also lower in the synbiotic group than in the placebo group (p < 0.05). In the synbiotic group, compared with the baseline, we observed a statistically significant increase in the genera Prevotella (5.28-14.4%, p < 0.001) and Dialister (9.68-13.4%; p < 0.05). Compared to baseline, we observed a statistically significant increase in the genera Prevotella (6.4-12.4%, p < 0.01) and Oscillospira (4.95% vs. 5.70%, p < 0.001) in the placebo group. In the synbiotic group, at the end of the intervention, an increase in Prevotella, Coprococcus, Lachnospiraceae (at the genus level) and Prevotella copri, Coprococcus eutactus, Ruminococcus spp. at the species level compared to baseline (predominance of Eubacterium dolichum, Lactobacillus ruminis, Clostridium ramosum, Bulleidia moorei) was observed. At the end of the 12th week of the study, when the synbiotic and placebo groups were compared, Bacteroides eggerthi species were dominant in the placebo group, while Collinsella stercoris species were dominant in the synbiotic group.</p><p><strong>Conclusion: </strong>This study is the first pediatric obesity study to show that a synbiotic treatment is associated with both changes intestinal microbiota composition and decreases in BMI. Trial identifier: NCT05162209 (www.</p><p><strong>Clinicaltrials: </strong>gov).</p>\",\"PeriodicalId\":12833,\"journal\":{\"name\":\"Gut Pathogens\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10360342/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gut Pathogens\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s13099-023-00563-y\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GASTROENTEROLOGY & HEPATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gut Pathogens","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13099-023-00563-y","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
Effects of synbiotic supplementation on intestinal microbiota composition in children and adolescents with exogenous obesity: (Probesity-2 trial).
Introduction: Gut microbiota manipulation may be a potential therapeutic target to reduce host energy storage. There is limited information about the effects of probiotics/synbiotics on intestinal microbiota composition in children and adolescents with obesity. The objective of this randomized double-blind placebo-controlled trial was to test the effects of a multispecies synbiotic on intestinal microbiota composition in children and adolescents with exogenous obesity.
Method: Children with exogenous obesity were managed with a standard diet and increased physical activity and were randomly allocated into two groups at a ratio of 1:1; the 1st group received synbiotic supplementation (probiotic mixture including Lactobacillus acidophilus, Lacticaseibacillus. rhamnosus, Bifidobacterium bifidum, Bifidobacterium longum, Enterococcus faecium (total 2.5 × 109 CFU/sachet) and fructo-oligosaccharides (FOS; 625 mg/sachet) for 12 weeks; the 2nd group received placebo once daily for 12 weeks. Fecal samples were obtained before and at the end of the 12-week intervention to characterize the changes in the gut microbiota composition. Detailed metagenomic and bioinformatics analyses were performed.
Results: Before the intervention, there were no significant differences in alpha diversity indicators between the synbiotic and placebo groups. After 12 weeks of intervention, the observed taxonomic units and Chao 1 were lower in the synbiotic group than at baseline (p < 0.001 for both). No difference for alpha diversity indicators was observed in the placebo group between baseline and 12 weeks of intervention. At the phylum level, the intestinal microbiota composition of the study groups was similar at baseline. The major phyla in the synbiotic group were Firmicutes (66.7%) and Bacteroidetes (18.8%). In the synbiotic group, the Bacteroidetes phylum was higher after 12 weeks than at baseline (24.0% vs. 18.8%, p < 0.01). In the synbiotic group, the Firmicutes/Bacteroidetes ratio was 3.54 at baseline and 2.75 at 12 weeks of intervention (p < 0.05). In the placebo group, the Firmicutes/Bacteroidetes ratio was 4.70 at baseline and 3.54 at 12 weeks of intervention (p < 0.05). After 12 weeks of intervention, the Firmicutes/Bacteroidetes ratio was also lower in the synbiotic group than in the placebo group (p < 0.05). In the synbiotic group, compared with the baseline, we observed a statistically significant increase in the genera Prevotella (5.28-14.4%, p < 0.001) and Dialister (9.68-13.4%; p < 0.05). Compared to baseline, we observed a statistically significant increase in the genera Prevotella (6.4-12.4%, p < 0.01) and Oscillospira (4.95% vs. 5.70%, p < 0.001) in the placebo group. In the synbiotic group, at the end of the intervention, an increase in Prevotella, Coprococcus, Lachnospiraceae (at the genus level) and Prevotella copri, Coprococcus eutactus, Ruminococcus spp. at the species level compared to baseline (predominance of Eubacterium dolichum, Lactobacillus ruminis, Clostridium ramosum, Bulleidia moorei) was observed. At the end of the 12th week of the study, when the synbiotic and placebo groups were compared, Bacteroides eggerthi species were dominant in the placebo group, while Collinsella stercoris species were dominant in the synbiotic group.
Conclusion: This study is the first pediatric obesity study to show that a synbiotic treatment is associated with both changes intestinal microbiota composition and decreases in BMI. Trial identifier: NCT05162209 (www.
Gut PathogensGASTROENTEROLOGY & HEPATOLOGY-MICROBIOLOGY
CiteScore
7.70
自引率
2.40%
发文量
43
期刊介绍:
Gut Pathogens is a fast publishing, inclusive and prominent international journal which recognizes the need for a publishing platform uniquely tailored to reflect the full breadth of research in the biology and medicine of pathogens, commensals and functional microbiota of the gut. The journal publishes basic, clinical and cutting-edge research on all aspects of the above mentioned organisms including probiotic bacteria and yeasts and their products. The scope also covers the related ecology, molecular genetics, physiology and epidemiology of these microbes. The journal actively invites timely reports on the novel aspects of genomics, metagenomics, microbiota profiling and systems biology.
Gut Pathogens will also consider, at the discretion of the editors, descriptive studies identifying a new genome sequence of a gut microbe or a series of related microbes (such as those obtained from new hosts, niches, settings, outbreaks and epidemics) and those obtained from single or multiple hosts at one or different time points (chronological evolution).