C Muddu Krishna, J N Kolla, Hari Babu Bollikolla, T Sravan Kumar Reddy, S Asha
{"title":"没食子酸乙酯:对hiv -1诱导的细胞病变和抗逆转录病毒诱导的细胞毒性有希望的细胞保护作用。","authors":"C Muddu Krishna, J N Kolla, Hari Babu Bollikolla, T Sravan Kumar Reddy, S Asha","doi":"10.1155/2023/6727762","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>HIV-1 infection in cell culture is typically characterized by certain cytopathic effects such as vacuolization of cells and development of syncytia, which further lead to cell death. In addition, the majority of drugs during HIV treatment exhibit serious adverse effects in patients, apart from their beneficial role. During the screening of cytoprotective agents to protect the cells from HIV-1-associated cell death and also drug-associated toxicity, antioxidants from a natural source are assumed to be a choice. A well-known antioxidant, ethyl gallate (EG), was selected for cytoprotection studies which have already been proven as an anti-HIV agent.</p><p><strong>Objective: </strong>The main objective of the study was to explore the cytoprotective potential of EG against HIV-1-induced cytopathic effect and antiretroviral drug toxicity.</p><p><strong>Methods: </strong>DPPH free radical scavenging assay was performed with EG to find the effective concentration for antioxidant activity. HIV-1infection-associated cytopathic effects and further rescue by EG were studied in MT-2 lymphocytes by the microscopic method and XTT cytopathic assays. The cellular toxicity of different antiretroviral drugs in different cell lines and the consequent cytoprotective effectiveness of EG were investigated using an MTT cell viability assay.</p><p><strong>Results: </strong>Like ascorbic acid, EG exhibited promising antioxidant activity. HIV-1 infection of MT2 cells induces cell death often referred to as the cytopathic effect. In addition, the usage of antiretroviral drugs also causes severe adverse effects like cytotoxicity. In this context, EG was tested for its cytoprotective properties against HIV-1-induced cytopathic effect and drug-mediated cellular toxicity. EG reclaimed back the MT2 cells from HIV-1-induced cell death. Antiretroviral drugs, such as ritonavir, efavirinz, AZT, and nevirapine, were tested for their toxicity and induced more cell death at higher concentrations in different tissue models such as the liver (THLE-3), lung (AEpiCM), colorectal (HT-29), and brain (U87 MG). Pretreated cells with EG were rescued from the toxic doses of ART.</p><p><strong>Conclusion: </strong>EG was found to be exhibited cytoprotection not only from HIV-1-linked cell death but also from the chemotoxicity of antiretroviral drugs. Evidently, EG could be a cytoprotective supplement in the management of AIDS along with its enormous antioxidant benefits.</p>","PeriodicalId":7473,"journal":{"name":"Advances in Virology","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10356543/pdf/","citationCount":"0","resultStr":"{\"title\":\"Ethyl Gallate: Promising Cytoprotective against HIV-1-Induced Cytopathy and Antiretroviral-Induced Cytotoxicity.\",\"authors\":\"C Muddu Krishna, J N Kolla, Hari Babu Bollikolla, T Sravan Kumar Reddy, S Asha\",\"doi\":\"10.1155/2023/6727762\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>HIV-1 infection in cell culture is typically characterized by certain cytopathic effects such as vacuolization of cells and development of syncytia, which further lead to cell death. In addition, the majority of drugs during HIV treatment exhibit serious adverse effects in patients, apart from their beneficial role. During the screening of cytoprotective agents to protect the cells from HIV-1-associated cell death and also drug-associated toxicity, antioxidants from a natural source are assumed to be a choice. A well-known antioxidant, ethyl gallate (EG), was selected for cytoprotection studies which have already been proven as an anti-HIV agent.</p><p><strong>Objective: </strong>The main objective of the study was to explore the cytoprotective potential of EG against HIV-1-induced cytopathic effect and antiretroviral drug toxicity.</p><p><strong>Methods: </strong>DPPH free radical scavenging assay was performed with EG to find the effective concentration for antioxidant activity. HIV-1infection-associated cytopathic effects and further rescue by EG were studied in MT-2 lymphocytes by the microscopic method and XTT cytopathic assays. The cellular toxicity of different antiretroviral drugs in different cell lines and the consequent cytoprotective effectiveness of EG were investigated using an MTT cell viability assay.</p><p><strong>Results: </strong>Like ascorbic acid, EG exhibited promising antioxidant activity. HIV-1 infection of MT2 cells induces cell death often referred to as the cytopathic effect. In addition, the usage of antiretroviral drugs also causes severe adverse effects like cytotoxicity. In this context, EG was tested for its cytoprotective properties against HIV-1-induced cytopathic effect and drug-mediated cellular toxicity. EG reclaimed back the MT2 cells from HIV-1-induced cell death. Antiretroviral drugs, such as ritonavir, efavirinz, AZT, and nevirapine, were tested for their toxicity and induced more cell death at higher concentrations in different tissue models such as the liver (THLE-3), lung (AEpiCM), colorectal (HT-29), and brain (U87 MG). Pretreated cells with EG were rescued from the toxic doses of ART.</p><p><strong>Conclusion: </strong>EG was found to be exhibited cytoprotection not only from HIV-1-linked cell death but also from the chemotoxicity of antiretroviral drugs. Evidently, EG could be a cytoprotective supplement in the management of AIDS along with its enormous antioxidant benefits.</p>\",\"PeriodicalId\":7473,\"journal\":{\"name\":\"Advances in Virology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10356543/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Virology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/6727762\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"VIROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Virology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/6727762","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"VIROLOGY","Score":null,"Total":0}
Ethyl Gallate: Promising Cytoprotective against HIV-1-Induced Cytopathy and Antiretroviral-Induced Cytotoxicity.
Introduction: HIV-1 infection in cell culture is typically characterized by certain cytopathic effects such as vacuolization of cells and development of syncytia, which further lead to cell death. In addition, the majority of drugs during HIV treatment exhibit serious adverse effects in patients, apart from their beneficial role. During the screening of cytoprotective agents to protect the cells from HIV-1-associated cell death and also drug-associated toxicity, antioxidants from a natural source are assumed to be a choice. A well-known antioxidant, ethyl gallate (EG), was selected for cytoprotection studies which have already been proven as an anti-HIV agent.
Objective: The main objective of the study was to explore the cytoprotective potential of EG against HIV-1-induced cytopathic effect and antiretroviral drug toxicity.
Methods: DPPH free radical scavenging assay was performed with EG to find the effective concentration for antioxidant activity. HIV-1infection-associated cytopathic effects and further rescue by EG were studied in MT-2 lymphocytes by the microscopic method and XTT cytopathic assays. The cellular toxicity of different antiretroviral drugs in different cell lines and the consequent cytoprotective effectiveness of EG were investigated using an MTT cell viability assay.
Results: Like ascorbic acid, EG exhibited promising antioxidant activity. HIV-1 infection of MT2 cells induces cell death often referred to as the cytopathic effect. In addition, the usage of antiretroviral drugs also causes severe adverse effects like cytotoxicity. In this context, EG was tested for its cytoprotective properties against HIV-1-induced cytopathic effect and drug-mediated cellular toxicity. EG reclaimed back the MT2 cells from HIV-1-induced cell death. Antiretroviral drugs, such as ritonavir, efavirinz, AZT, and nevirapine, were tested for their toxicity and induced more cell death at higher concentrations in different tissue models such as the liver (THLE-3), lung (AEpiCM), colorectal (HT-29), and brain (U87 MG). Pretreated cells with EG were rescued from the toxic doses of ART.
Conclusion: EG was found to be exhibited cytoprotection not only from HIV-1-linked cell death but also from the chemotoxicity of antiretroviral drugs. Evidently, EG could be a cytoprotective supplement in the management of AIDS along with its enormous antioxidant benefits.