实验室控制的石油污染海洋沉积物中微生物群落的功能响应

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Regis Antonioli, Joice de Faria Poloni, Manuel A. Riveros Escalona and Márcio Dorn
{"title":"实验室控制的石油污染海洋沉积物中微生物群落的功能响应","authors":"Regis Antonioli, Joice de Faria Poloni, Manuel A. Riveros Escalona and Márcio Dorn","doi":"10.1039/D3MO00007A","DOIUrl":null,"url":null,"abstract":"<p >Crude oil contamination is one of the biggest problems in modern society. As oil enters into contact with the environment, especially if the point of contact is a body of water, it begins a weathering process by mixing and spreading. This is dangerous to local living organisms’ communities and can impact diversity. However, despite unfavorable conditions, some microorganisms in these environments can survive using hydrocarbons as a nutrient source. Thus, understanding the local community dynamics of contaminated areas is essential. In this work, we analyzed the 16S rRNA amplicon sequencing and metatranscriptomic data of uncontaminated <em>versus</em> contaminated shallow marine sediment from publicly available datasets. We investigated the local population's taxonomic composition, species diversity, and fluctuations over time. Co-expression analysis coupled with functional enrichment showed us a prevalence of hydrocarbon-degrading functionality while keeping a distinct transcriptional profile between the late stages of oil contamination and the uncontaminated control. Processes related to the degradation of aromatic compounds and the metabolism of propanoate and butanoate were coupled with evidence of enhanced activity such as flagellar assembly and two-component system. Many enzymes of the anaerobic toluene degradation pathways were also enriched in our results. Furthermore, our diversity and taxonomical analyses showed a prevalence of the class <em>Desulfobacteria</em>, indicating interesting targets for bioremediation applications on marine sediment.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Functional response of microbial communities in lab-controlled oil-contaminated marine sediment†\",\"authors\":\"Regis Antonioli, Joice de Faria Poloni, Manuel A. Riveros Escalona and Márcio Dorn\",\"doi\":\"10.1039/D3MO00007A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Crude oil contamination is one of the biggest problems in modern society. As oil enters into contact with the environment, especially if the point of contact is a body of water, it begins a weathering process by mixing and spreading. This is dangerous to local living organisms’ communities and can impact diversity. However, despite unfavorable conditions, some microorganisms in these environments can survive using hydrocarbons as a nutrient source. Thus, understanding the local community dynamics of contaminated areas is essential. In this work, we analyzed the 16S rRNA amplicon sequencing and metatranscriptomic data of uncontaminated <em>versus</em> contaminated shallow marine sediment from publicly available datasets. We investigated the local population's taxonomic composition, species diversity, and fluctuations over time. Co-expression analysis coupled with functional enrichment showed us a prevalence of hydrocarbon-degrading functionality while keeping a distinct transcriptional profile between the late stages of oil contamination and the uncontaminated control. Processes related to the degradation of aromatic compounds and the metabolism of propanoate and butanoate were coupled with evidence of enhanced activity such as flagellar assembly and two-component system. Many enzymes of the anaerobic toluene degradation pathways were also enriched in our results. Furthermore, our diversity and taxonomical analyses showed a prevalence of the class <em>Desulfobacteria</em>, indicating interesting targets for bioremediation applications on marine sediment.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2023/mo/d3mo00007a\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2023/mo/d3mo00007a","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

原油污染是现代社会最大的问题之一。当石油与环境接触时,特别是当接触点是水体时,它就会通过混合和扩散开始一个风化过程。这对当地生物群落是危险的,并可能影响多样性。然而,尽管条件不利,但这些环境中的一些微生物可以利用碳氢化合物作为营养源而生存。因此,了解受污染地区的当地社区动态至关重要。在这项工作中,我们分析了来自公开数据集的未污染和受污染浅海沉积物的16S rRNA扩增子测序和亚转录组学数据。我们调查了当地种群的分类组成、物种多样性和随时间的波动。与功能富集相结合的共表达分析表明,在油污染后期和未污染对照之间,烃降解功能普遍存在,同时保持了不同的转录谱。与芳香族化合物降解和丙酸和丁酸代谢相关的过程与鞭毛组装和双组分系统等增强活性的证据相结合。我们的结果还丰富了厌氧甲苯降解途径的许多酶。此外,我们的多样性和分类学分析表明,Desulfobacteria类普遍存在,这表明了海洋沉积物生物修复应用的有趣目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Functional response of microbial communities in lab-controlled oil-contaminated marine sediment†

Functional response of microbial communities in lab-controlled oil-contaminated marine sediment†

Crude oil contamination is one of the biggest problems in modern society. As oil enters into contact with the environment, especially if the point of contact is a body of water, it begins a weathering process by mixing and spreading. This is dangerous to local living organisms’ communities and can impact diversity. However, despite unfavorable conditions, some microorganisms in these environments can survive using hydrocarbons as a nutrient source. Thus, understanding the local community dynamics of contaminated areas is essential. In this work, we analyzed the 16S rRNA amplicon sequencing and metatranscriptomic data of uncontaminated versus contaminated shallow marine sediment from publicly available datasets. We investigated the local population's taxonomic composition, species diversity, and fluctuations over time. Co-expression analysis coupled with functional enrichment showed us a prevalence of hydrocarbon-degrading functionality while keeping a distinct transcriptional profile between the late stages of oil contamination and the uncontaminated control. Processes related to the degradation of aromatic compounds and the metabolism of propanoate and butanoate were coupled with evidence of enhanced activity such as flagellar assembly and two-component system. Many enzymes of the anaerobic toluene degradation pathways were also enriched in our results. Furthermore, our diversity and taxonomical analyses showed a prevalence of the class Desulfobacteria, indicating interesting targets for bioremediation applications on marine sediment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信