{"title":"双氢青蒿素通过诱导ros依赖性细胞凋亡和铁下垂增强吉非替尼对肺腺癌细胞的细胞毒性。","authors":"Xiang-Yu Lai, Yu-Mei Shi, Ming-Ming Zhou","doi":"10.1002/kjm2.12684","DOIUrl":null,"url":null,"abstract":"<p><p>The application of epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs), such as gefitinib, has shifted lung cancer treatment from empirical chemotherapy to targeted molecular therapy. However, acquired drug resistance is inevitable in almost all non-small cell lung cancer (NSCLC) patients treated with gefitinib. Combined treatment with dihydroartemisinin (DHA) and gefitinib produced a better inhibitory effect on lung adenocarcinoma than gefitinib treatment alone; however, the specific mechanism remains unclear. In this study, we aimed to assess the underlying mechanism of this combination treatment. We prepared gefitinib-resistant A549 cells and investigated whether apoptosis and ferroptosis were involved in the sensitizing effect of DHA. Treatment with 5 μM gefitinib resulted in rupturing and floatation of A549 cells in the medium, while A549-GR cells were found to be insusceptible to gefitinib. However, treatment with DHA substantially inhibited the proliferation of A549-GR cells in a dose-dependent manner accompanied by increased apoptosis and ferroptosis. The accumulated reactive oxygen species (ROS) was crucial for the inhibitory effect of DHA on A549-GR cells. Moreover, cellular autophagy was significantly upregulated post-DHA treatment. The combined treatment of DHA and gefitinib resulted in inhibition of proliferation of A549, H1975, and HCC827 cells, and ROS accumulation and a remarkable induction of apoptosis was observed in A549-GR cells. DHA significantly induced apoptosis and ferroptosis in a dose-dependent manner and exhibited high cellular toxicity on A549-GR cells when combined with gefitinib.</p>","PeriodicalId":49946,"journal":{"name":"Kaohsiung Journal of Medical Sciences","volume":"39 7","pages":"699-709"},"PeriodicalIF":2.7000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dihydroartemisinin enhances gefitinib cytotoxicity against lung adenocarcinoma cells by inducing ROS-dependent apoptosis and ferroptosis.\",\"authors\":\"Xiang-Yu Lai, Yu-Mei Shi, Ming-Ming Zhou\",\"doi\":\"10.1002/kjm2.12684\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The application of epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs), such as gefitinib, has shifted lung cancer treatment from empirical chemotherapy to targeted molecular therapy. However, acquired drug resistance is inevitable in almost all non-small cell lung cancer (NSCLC) patients treated with gefitinib. Combined treatment with dihydroartemisinin (DHA) and gefitinib produced a better inhibitory effect on lung adenocarcinoma than gefitinib treatment alone; however, the specific mechanism remains unclear. In this study, we aimed to assess the underlying mechanism of this combination treatment. We prepared gefitinib-resistant A549 cells and investigated whether apoptosis and ferroptosis were involved in the sensitizing effect of DHA. Treatment with 5 μM gefitinib resulted in rupturing and floatation of A549 cells in the medium, while A549-GR cells were found to be insusceptible to gefitinib. However, treatment with DHA substantially inhibited the proliferation of A549-GR cells in a dose-dependent manner accompanied by increased apoptosis and ferroptosis. The accumulated reactive oxygen species (ROS) was crucial for the inhibitory effect of DHA on A549-GR cells. Moreover, cellular autophagy was significantly upregulated post-DHA treatment. The combined treatment of DHA and gefitinib resulted in inhibition of proliferation of A549, H1975, and HCC827 cells, and ROS accumulation and a remarkable induction of apoptosis was observed in A549-GR cells. DHA significantly induced apoptosis and ferroptosis in a dose-dependent manner and exhibited high cellular toxicity on A549-GR cells when combined with gefitinib.</p>\",\"PeriodicalId\":49946,\"journal\":{\"name\":\"Kaohsiung Journal of Medical Sciences\",\"volume\":\"39 7\",\"pages\":\"699-709\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kaohsiung Journal of Medical Sciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/kjm2.12684\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kaohsiung Journal of Medical Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/kjm2.12684","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Dihydroartemisinin enhances gefitinib cytotoxicity against lung adenocarcinoma cells by inducing ROS-dependent apoptosis and ferroptosis.
The application of epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs), such as gefitinib, has shifted lung cancer treatment from empirical chemotherapy to targeted molecular therapy. However, acquired drug resistance is inevitable in almost all non-small cell lung cancer (NSCLC) patients treated with gefitinib. Combined treatment with dihydroartemisinin (DHA) and gefitinib produced a better inhibitory effect on lung adenocarcinoma than gefitinib treatment alone; however, the specific mechanism remains unclear. In this study, we aimed to assess the underlying mechanism of this combination treatment. We prepared gefitinib-resistant A549 cells and investigated whether apoptosis and ferroptosis were involved in the sensitizing effect of DHA. Treatment with 5 μM gefitinib resulted in rupturing and floatation of A549 cells in the medium, while A549-GR cells were found to be insusceptible to gefitinib. However, treatment with DHA substantially inhibited the proliferation of A549-GR cells in a dose-dependent manner accompanied by increased apoptosis and ferroptosis. The accumulated reactive oxygen species (ROS) was crucial for the inhibitory effect of DHA on A549-GR cells. Moreover, cellular autophagy was significantly upregulated post-DHA treatment. The combined treatment of DHA and gefitinib resulted in inhibition of proliferation of A549, H1975, and HCC827 cells, and ROS accumulation and a remarkable induction of apoptosis was observed in A549-GR cells. DHA significantly induced apoptosis and ferroptosis in a dose-dependent manner and exhibited high cellular toxicity on A549-GR cells when combined with gefitinib.
期刊介绍:
Kaohsiung Journal of Medical Sciences (KJMS), is the official peer-reviewed open access publication of Kaohsiung Medical University, Taiwan. The journal was launched in 1985 to promote clinical and scientific research in the medical sciences in Taiwan, and to disseminate this research to the international community. It is published monthly by Wiley. KJMS aims to publish original research and review papers in all fields of medicine and related disciplines that are of topical interest to the medical profession. Authors are welcome to submit Perspectives, reviews, original articles, short communications, Correspondence and letters to the editor for consideration.