非对称振动软机器人的简单快速运动。

IF 6.4 2区 计算机科学 Q1 ROBOTICS
Soft Robotics Pub Date : 2023-12-01 Epub Date: 2023-07-20 DOI:10.1089/soro.2022.0209
Alberico Sabbadini, Mostafa A Atalla, Michaël Wiertlewski
{"title":"非对称振动软机器人的简单快速运动。","authors":"Alberico Sabbadini, Mostafa A Atalla, Michaël Wiertlewski","doi":"10.1089/soro.2022.0209","DOIUrl":null,"url":null,"abstract":"<p><p>To be fully integrated into the activities of our daily lives, robots need to be capable of traversing unstructured environments and interacting safely with their surroundings. Soft robots are perfect candidates since they can adapt to their surroundings through passive material compliance, rather than relying on complex control. However, the same compliance hinders the generation of propelling forces, and current approaches face a trade-off between traveling speed, action range, and control complexity. We overcome this trade-off by developing a locomotion mechanism based on the synergistic interaction between symmetric vibrations, elasticity, and asymmetric morphology. We then realize a rapid soft locomotor using inexpensive off-the-shelf components and requiring only elementary actuation and control. A single robotic unit can travel at speeds up to 100 mm/s when tethered and 35 mm/s when untethered. We derive a model that predicts the speed of the robot as a function of several design parameters and physical properties, highlighting the role of geometric asymmetries in the resulting anisotropic motion. Moreover, these elementary units can be added together to create more complex behaviors. By adding 2 units in parallel, the assembly can locomote and be steered following nonholonomic constraints. Our approach opens the door to a new class of low-cost soft robots that can travel fast and far with elementary fabrication and control, and which can be combined to achieve complex functions without compromising their essential simplicity.</p>","PeriodicalId":48685,"journal":{"name":"Soft Robotics","volume":" ","pages":"1199-1208"},"PeriodicalIF":6.4000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simple and Fast Locomotion of Vibrating Asymmetric Soft Robots.\",\"authors\":\"Alberico Sabbadini, Mostafa A Atalla, Michaël Wiertlewski\",\"doi\":\"10.1089/soro.2022.0209\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>To be fully integrated into the activities of our daily lives, robots need to be capable of traversing unstructured environments and interacting safely with their surroundings. Soft robots are perfect candidates since they can adapt to their surroundings through passive material compliance, rather than relying on complex control. However, the same compliance hinders the generation of propelling forces, and current approaches face a trade-off between traveling speed, action range, and control complexity. We overcome this trade-off by developing a locomotion mechanism based on the synergistic interaction between symmetric vibrations, elasticity, and asymmetric morphology. We then realize a rapid soft locomotor using inexpensive off-the-shelf components and requiring only elementary actuation and control. A single robotic unit can travel at speeds up to 100 mm/s when tethered and 35 mm/s when untethered. We derive a model that predicts the speed of the robot as a function of several design parameters and physical properties, highlighting the role of geometric asymmetries in the resulting anisotropic motion. Moreover, these elementary units can be added together to create more complex behaviors. By adding 2 units in parallel, the assembly can locomote and be steered following nonholonomic constraints. Our approach opens the door to a new class of low-cost soft robots that can travel fast and far with elementary fabrication and control, and which can be combined to achieve complex functions without compromising their essential simplicity.</p>\",\"PeriodicalId\":48685,\"journal\":{\"name\":\"Soft Robotics\",\"volume\":\" \",\"pages\":\"1199-1208\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soft Robotics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1089/soro.2022.0209\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/7/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft Robotics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1089/soro.2022.0209","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/7/20 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

摘要

为了完全融入我们的日常生活,机器人需要能够穿越非结构化环境,并与周围环境安全互动。软机器人是完美的选择,因为它们可以通过被动材料顺应来适应周围环境,而不是依赖于复杂的控制。然而,同样的顺应性阻碍了推进力的产生,目前的方法面临着行驶速度、动作范围和控制复杂性之间的权衡。我们通过开发一种基于对称振动、弹性和不对称形态之间协同作用的运动机制来克服这种权衡。然后,我们实现了快速软运动使用廉价的现成的组件,只需要基本的驱动和控制。单个机器人单元在系绳状态下的移动速度可达100毫米/秒,在不系绳状态下可达35毫米/秒。我们推导了一个模型,该模型预测机器人的速度作为几个设计参数和物理特性的函数,突出了几何不对称在产生的各向异性运动中的作用。此外,这些基本单元可以加在一起创建更复杂的行为。通过增加两个并联单元,该装配体可以在非完整约束下移动和操纵。我们的方法为一种新型低成本软机器人打开了大门,这种机器人可以在基本的制造和控制下快速而遥远地移动,并且可以在不损害其基本简单性的情况下组合实现复杂的功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simple and Fast Locomotion of Vibrating Asymmetric Soft Robots.

To be fully integrated into the activities of our daily lives, robots need to be capable of traversing unstructured environments and interacting safely with their surroundings. Soft robots are perfect candidates since they can adapt to their surroundings through passive material compliance, rather than relying on complex control. However, the same compliance hinders the generation of propelling forces, and current approaches face a trade-off between traveling speed, action range, and control complexity. We overcome this trade-off by developing a locomotion mechanism based on the synergistic interaction between symmetric vibrations, elasticity, and asymmetric morphology. We then realize a rapid soft locomotor using inexpensive off-the-shelf components and requiring only elementary actuation and control. A single robotic unit can travel at speeds up to 100 mm/s when tethered and 35 mm/s when untethered. We derive a model that predicts the speed of the robot as a function of several design parameters and physical properties, highlighting the role of geometric asymmetries in the resulting anisotropic motion. Moreover, these elementary units can be added together to create more complex behaviors. By adding 2 units in parallel, the assembly can locomote and be steered following nonholonomic constraints. Our approach opens the door to a new class of low-cost soft robots that can travel fast and far with elementary fabrication and control, and which can be combined to achieve complex functions without compromising their essential simplicity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Soft Robotics
Soft Robotics ROBOTICS-
CiteScore
15.50
自引率
5.10%
发文量
128
期刊介绍: Soft Robotics (SoRo) stands as a premier robotics journal, showcasing top-tier, peer-reviewed research on the forefront of soft and deformable robotics. Encompassing flexible electronics, materials science, computer science, and biomechanics, it pioneers breakthroughs in robotic technology capable of safe interaction with living systems and navigating complex environments, natural or human-made. With a multidisciplinary approach, SoRo integrates advancements in biomedical engineering, biomechanics, mathematical modeling, biopolymer chemistry, computer science, and tissue engineering, offering comprehensive insights into constructing adaptable devices that can undergo significant changes in shape and size. This transformative technology finds critical applications in surgery, assistive healthcare devices, emergency search and rescue, space instrument repair, mine detection, and beyond.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信