{"title":"一般混合复发事件数据的回归分析。","authors":"Ryan Sun, Dayu Sun, Liang Zhu, Jianguo Sun","doi":"10.1007/s10985-023-09604-9","DOIUrl":null,"url":null,"abstract":"<p><p>In modern biomedical datasets, it is common for recurrent outcomes data to be collected in an incomplete manner. More specifically, information on recurrent events is routinely recorded as a mixture of recurrent event data, panel count data, and panel binary data; we refer to this structure as general mixed recurrent event data. Although the aforementioned data types are individually well-studied, there does not appear to exist an established approach for regression analysis of the three component combination. Often, ad-hoc measures such as imputation or discarding of data are used to homogenize records prior to the analysis, but such measures lead to obvious concerns regarding robustness, loss of efficiency, and other issues. This work proposes a maximum likelihood regression estimation procedure for the combination of general mixed recurrent event data and establishes the asymptotic properties of the proposed estimators. In addition, we generalize the approach to allow for the existence of terminal events, a common complicating feature in recurrent event analysis. Numerical studies and application to the Childhood Cancer Survivor Study suggest that the proposed procedures work well in practical situations.</p>","PeriodicalId":49908,"journal":{"name":"Lifetime Data Analysis","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11334736/pdf/","citationCount":"0","resultStr":"{\"title\":\"Regression analysis of general mixed recurrent event data.\",\"authors\":\"Ryan Sun, Dayu Sun, Liang Zhu, Jianguo Sun\",\"doi\":\"10.1007/s10985-023-09604-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In modern biomedical datasets, it is common for recurrent outcomes data to be collected in an incomplete manner. More specifically, information on recurrent events is routinely recorded as a mixture of recurrent event data, panel count data, and panel binary data; we refer to this structure as general mixed recurrent event data. Although the aforementioned data types are individually well-studied, there does not appear to exist an established approach for regression analysis of the three component combination. Often, ad-hoc measures such as imputation or discarding of data are used to homogenize records prior to the analysis, but such measures lead to obvious concerns regarding robustness, loss of efficiency, and other issues. This work proposes a maximum likelihood regression estimation procedure for the combination of general mixed recurrent event data and establishes the asymptotic properties of the proposed estimators. In addition, we generalize the approach to allow for the existence of terminal events, a common complicating feature in recurrent event analysis. Numerical studies and application to the Childhood Cancer Survivor Study suggest that the proposed procedures work well in practical situations.</p>\",\"PeriodicalId\":49908,\"journal\":{\"name\":\"Lifetime Data Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11334736/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lifetime Data Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10985-023-09604-9\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/7/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lifetime Data Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10985-023-09604-9","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/7/12 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Regression analysis of general mixed recurrent event data.
In modern biomedical datasets, it is common for recurrent outcomes data to be collected in an incomplete manner. More specifically, information on recurrent events is routinely recorded as a mixture of recurrent event data, panel count data, and panel binary data; we refer to this structure as general mixed recurrent event data. Although the aforementioned data types are individually well-studied, there does not appear to exist an established approach for regression analysis of the three component combination. Often, ad-hoc measures such as imputation or discarding of data are used to homogenize records prior to the analysis, but such measures lead to obvious concerns regarding robustness, loss of efficiency, and other issues. This work proposes a maximum likelihood regression estimation procedure for the combination of general mixed recurrent event data and establishes the asymptotic properties of the proposed estimators. In addition, we generalize the approach to allow for the existence of terminal events, a common complicating feature in recurrent event analysis. Numerical studies and application to the Childhood Cancer Survivor Study suggest that the proposed procedures work well in practical situations.
期刊介绍:
The objective of Lifetime Data Analysis is to advance and promote statistical science in the various applied fields that deal with lifetime data, including: Actuarial Science – Economics – Engineering Sciences – Environmental Sciences – Management Science – Medicine – Operations Research – Public Health – Social and Behavioral Sciences.