一个位点,几个功能性rna -负责microRNAs序列变异性机制的新兴角色。

IF 1.8 4区 生物学 Q3 BIOLOGY
Tamás I Orbán
{"title":"一个位点,几个功能性rna -负责microRNAs序列变异性机制的新兴角色。","authors":"Tamás I Orbán","doi":"10.1007/s42977-023-00154-7","DOIUrl":null,"url":null,"abstract":"<p><p>With the development of modern molecular genetics, the original \"one gene-one enzyme\" hypothesis has been outdated. For protein coding genes, the discovery of alternative splicing and RNA editing provided the biochemical background for the RNA repertoire of a single locus, which also serves as an important pillar for the enormous protein variability of the genomes. Non-protein coding RNA genes were also revealed to produce several RNA species with distinct functions. The loci of microRNAs (miRNAs), encoding for small endogenous regulatory RNAs, were also found to produce a population of small RNAs, rather than a single defined product. This review aims to present the mechanisms contributing to the astonishing variability of miRNAs revealed by the new sequencing technologies. One important source is the careful balance of arm selection, producing sequentially different 5p- or 3p-miRNAs from the same pre-miRNA, thereby broadening the number of regulated target RNAs and the phenotypic response. In addition, the formation of 5', 3' and polymorphic isomiRs, with variable end and internal sequences also leads to a higher number of targeted sequences, and increases the regulatory output. These miRNA maturation processes, together with other known mechanisms such as RNA editing, further increase the potential outcome of this small RNA pathway. By discussing the subtle mechanisms behind the sequence diversity of miRNAs, this review intends to reveal this engaging aspect of the inherited \"RNA world\", how it contributes to the almost infinite molecular variability among living organisms, and how this variability can be exploited to treat human diseases.</p>","PeriodicalId":8853,"journal":{"name":"Biologia futura","volume":"74 1-2","pages":"17-28"},"PeriodicalIF":1.8000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"One locus, several functional RNAs-emerging roles of the mechanisms responsible for the sequence variability of microRNAs.\",\"authors\":\"Tamás I Orbán\",\"doi\":\"10.1007/s42977-023-00154-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>With the development of modern molecular genetics, the original \\\"one gene-one enzyme\\\" hypothesis has been outdated. For protein coding genes, the discovery of alternative splicing and RNA editing provided the biochemical background for the RNA repertoire of a single locus, which also serves as an important pillar for the enormous protein variability of the genomes. Non-protein coding RNA genes were also revealed to produce several RNA species with distinct functions. The loci of microRNAs (miRNAs), encoding for small endogenous regulatory RNAs, were also found to produce a population of small RNAs, rather than a single defined product. This review aims to present the mechanisms contributing to the astonishing variability of miRNAs revealed by the new sequencing technologies. One important source is the careful balance of arm selection, producing sequentially different 5p- or 3p-miRNAs from the same pre-miRNA, thereby broadening the number of regulated target RNAs and the phenotypic response. In addition, the formation of 5', 3' and polymorphic isomiRs, with variable end and internal sequences also leads to a higher number of targeted sequences, and increases the regulatory output. These miRNA maturation processes, together with other known mechanisms such as RNA editing, further increase the potential outcome of this small RNA pathway. By discussing the subtle mechanisms behind the sequence diversity of miRNAs, this review intends to reveal this engaging aspect of the inherited \\\"RNA world\\\", how it contributes to the almost infinite molecular variability among living organisms, and how this variability can be exploited to treat human diseases.</p>\",\"PeriodicalId\":8853,\"journal\":{\"name\":\"Biologia futura\",\"volume\":\"74 1-2\",\"pages\":\"17-28\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biologia futura\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s42977-023-00154-7\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biologia futura","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s42977-023-00154-7","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 1

摘要

随着现代分子遗传学的发展,原来的“一基因一酶”假说已经过时。对于蛋白质编码基因,选择性剪接和RNA编辑的发现为单个位点的RNA库提供了生化背景,这也是基因组巨大的蛋白质变异性的重要支柱。非蛋白编码RNA基因也被发现产生几种具有不同功能的RNA物种。编码小内源性调控rna的microRNAs (miRNAs)位点也被发现产生小rna群体,而不是单一的确定产物。本文旨在介绍新测序技术揭示的mirna惊人变异性的机制。一个重要的来源是臂选择的谨慎平衡,从相同的pre-miRNA中依次产生不同的5p或3p- mirna,从而扩大了调节靶rna的数量和表型反应。此外,末端和内部序列可变的5′、3′和多态性异构体的形成也导致了更多的靶序列,增加了调控输出。这些miRNA成熟过程与其他已知机制(如RNA编辑)一起,进一步增加了这种小RNA途径的潜在结果。通过讨论mirna序列多样性背后的微妙机制,本综述旨在揭示遗传“RNA世界”的这一引人入胜的方面,它如何促成生物体中几乎无限的分子变异性,以及如何利用这种变异性来治疗人类疾病。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

One locus, several functional RNAs-emerging roles of the mechanisms responsible for the sequence variability of microRNAs.

One locus, several functional RNAs-emerging roles of the mechanisms responsible for the sequence variability of microRNAs.

With the development of modern molecular genetics, the original "one gene-one enzyme" hypothesis has been outdated. For protein coding genes, the discovery of alternative splicing and RNA editing provided the biochemical background for the RNA repertoire of a single locus, which also serves as an important pillar for the enormous protein variability of the genomes. Non-protein coding RNA genes were also revealed to produce several RNA species with distinct functions. The loci of microRNAs (miRNAs), encoding for small endogenous regulatory RNAs, were also found to produce a population of small RNAs, rather than a single defined product. This review aims to present the mechanisms contributing to the astonishing variability of miRNAs revealed by the new sequencing technologies. One important source is the careful balance of arm selection, producing sequentially different 5p- or 3p-miRNAs from the same pre-miRNA, thereby broadening the number of regulated target RNAs and the phenotypic response. In addition, the formation of 5', 3' and polymorphic isomiRs, with variable end and internal sequences also leads to a higher number of targeted sequences, and increases the regulatory output. These miRNA maturation processes, together with other known mechanisms such as RNA editing, further increase the potential outcome of this small RNA pathway. By discussing the subtle mechanisms behind the sequence diversity of miRNAs, this review intends to reveal this engaging aspect of the inherited "RNA world", how it contributes to the almost infinite molecular variability among living organisms, and how this variability can be exploited to treat human diseases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biologia futura
Biologia futura Agricultural and Biological Sciences-Agricultural and Biological Sciences (all)
CiteScore
3.50
自引率
0.00%
发文量
27
期刊介绍: How can the scientific knowledge we possess now influence that future? That is, the FUTURE of Earth and life − of humankind. Can we make choices in the present to change our future? How can 21st century biological research ask proper scientific questions and find solid answers? Addressing these questions is the main goal of Biologia Futura (formerly Acta Biologica Hungarica). In keeping with the name, the new mission is to focus on areas of biology where major advances are to be expected, areas of biology with strong inter-disciplinary connection and to provide new avenues for future research in biology. Biologia Futura aims to publish articles from all fields of biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信