用于助听器的远程麦克风系统的实际技术测试电池。

IF 2.6 2区 医学 Q1 AUDIOLOGY & SPEECH-LANGUAGE PATHOLOGY
Michael A Stone, Melanie Lough, Keith Wilbraham, Helen Whiston, Harvey Dillon
{"title":"用于助听器的远程麦克风系统的实际技术测试电池。","authors":"Michael A Stone,&nbsp;Melanie Lough,&nbsp;Keith Wilbraham,&nbsp;Helen Whiston,&nbsp;Harvey Dillon","doi":"10.1177/23312165231182518","DOIUrl":null,"url":null,"abstract":"<p><p>Remote microphones (RMs) enable clearer reception of speech than would be normally achievable when relying on the acoustic sound field at the listener's ear (Hawkins, J Sp Hear Disord 49, 409-418, 1984). They are used in a wide range of environments, with one example being for children in educational settings. The international standards defining the assessment methods of the technical performance of RMs rely on free-field (anechoic) delivery, a rarely met acoustic scenario. Although some work has been offered on more real-world testing (Husstedt et al., Int J Audiol 61, 34-45. 2022), the area remains under-investigated. The electroacoustic performance of five RMs in a low-reverberation room was compared in order to assess just the RM link, rather than measurements at the end of the signal chain, for example, speech intelligibility in human observers. It pilots physical- and electro-acoustic measures to characterize the performance of RMs. The measures are based on those found in the IEC 60118 standards relating to hearing aids, but modified for diffuse-field delivery, as well as adaptive signal processing. Speech intelligibility and quality are assessed by computer models. Noise bands were often processed into irrelevance by adaptive systems that could not be deactivated. Speech-related signals were more successful. The five RMs achieved similar levels of good predicted intelligibility, for each of two background noise levels. The main difference observed was in the transmission delay between microphone and ear. This ranged between 40 and 50 ms in two of the systems, on the upper edge of acceptability necessary for audio-visual synchrony.</p>","PeriodicalId":48678,"journal":{"name":"Trends in Hearing","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10345919/pdf/","citationCount":"0","resultStr":"{\"title\":\"Toward a Real-World Technical Test Battery for Remote Microphone Systems Used with Hearing Prostheses.\",\"authors\":\"Michael A Stone,&nbsp;Melanie Lough,&nbsp;Keith Wilbraham,&nbsp;Helen Whiston,&nbsp;Harvey Dillon\",\"doi\":\"10.1177/23312165231182518\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Remote microphones (RMs) enable clearer reception of speech than would be normally achievable when relying on the acoustic sound field at the listener's ear (Hawkins, J Sp Hear Disord 49, 409-418, 1984). They are used in a wide range of environments, with one example being for children in educational settings. The international standards defining the assessment methods of the technical performance of RMs rely on free-field (anechoic) delivery, a rarely met acoustic scenario. Although some work has been offered on more real-world testing (Husstedt et al., Int J Audiol 61, 34-45. 2022), the area remains under-investigated. The electroacoustic performance of five RMs in a low-reverberation room was compared in order to assess just the RM link, rather than measurements at the end of the signal chain, for example, speech intelligibility in human observers. It pilots physical- and electro-acoustic measures to characterize the performance of RMs. The measures are based on those found in the IEC 60118 standards relating to hearing aids, but modified for diffuse-field delivery, as well as adaptive signal processing. Speech intelligibility and quality are assessed by computer models. Noise bands were often processed into irrelevance by adaptive systems that could not be deactivated. Speech-related signals were more successful. The five RMs achieved similar levels of good predicted intelligibility, for each of two background noise levels. The main difference observed was in the transmission delay between microphone and ear. This ranged between 40 and 50 ms in two of the systems, on the upper edge of acceptability necessary for audio-visual synchrony.</p>\",\"PeriodicalId\":48678,\"journal\":{\"name\":\"Trends in Hearing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10345919/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in Hearing\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/23312165231182518\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUDIOLOGY & SPEECH-LANGUAGE PATHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Hearing","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/23312165231182518","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUDIOLOGY & SPEECH-LANGUAGE PATHOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

远端麦克风(RMs)能够比依靠听者耳中的声学声场更清晰地接收语音(Hawkins, J . Sp . Hear Disord 49, 409-418, 1984)。它们被广泛应用于各种环境中,其中一个例子就是教育环境中的儿童。定义rm技术性能评估方法的国际标准依赖于自由场(消声)发射,这是一种很少遇到的声学场景。虽然一些工作已经提供了更多的现实世界的测试(Husstedt等人,国际听力杂志61,34-45)。2022年),该地区仍未得到充分调查。在一个低混响的房间里,比较了五个RM的电声性能,以便仅评估RM链路,而不是在信号链的末端进行测量,例如,人类观察者的语音可理解性。它采用物理和电声测量来表征RMs的性能。这些措施是基于与助听器相关的IEC 60118标准,但针对扩散场传输和自适应信号处理进行了修改。语音清晰度和质量由计算机模型评估。噪声带通常被自适应系统处理成不相关的,不能停用。语音相关的信号更成功。对于两种背景噪声水平中的每一种,五个RMs都达到了相似的良好预测可理解性水平。观察到的主要区别是麦克风和耳朵之间的传输延迟。在两个系统中,这个范围在40到50毫秒之间,处于视听同步所需的可接受性的上限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Toward a Real-World Technical Test Battery for Remote Microphone Systems Used with Hearing Prostheses.

Toward a Real-World Technical Test Battery for Remote Microphone Systems Used with Hearing Prostheses.

Toward a Real-World Technical Test Battery for Remote Microphone Systems Used with Hearing Prostheses.

Toward a Real-World Technical Test Battery for Remote Microphone Systems Used with Hearing Prostheses.

Remote microphones (RMs) enable clearer reception of speech than would be normally achievable when relying on the acoustic sound field at the listener's ear (Hawkins, J Sp Hear Disord 49, 409-418, 1984). They are used in a wide range of environments, with one example being for children in educational settings. The international standards defining the assessment methods of the technical performance of RMs rely on free-field (anechoic) delivery, a rarely met acoustic scenario. Although some work has been offered on more real-world testing (Husstedt et al., Int J Audiol 61, 34-45. 2022), the area remains under-investigated. The electroacoustic performance of five RMs in a low-reverberation room was compared in order to assess just the RM link, rather than measurements at the end of the signal chain, for example, speech intelligibility in human observers. It pilots physical- and electro-acoustic measures to characterize the performance of RMs. The measures are based on those found in the IEC 60118 standards relating to hearing aids, but modified for diffuse-field delivery, as well as adaptive signal processing. Speech intelligibility and quality are assessed by computer models. Noise bands were often processed into irrelevance by adaptive systems that could not be deactivated. Speech-related signals were more successful. The five RMs achieved similar levels of good predicted intelligibility, for each of two background noise levels. The main difference observed was in the transmission delay between microphone and ear. This ranged between 40 and 50 ms in two of the systems, on the upper edge of acceptability necessary for audio-visual synchrony.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Trends in Hearing
Trends in Hearing AUDIOLOGY & SPEECH-LANGUAGE PATHOLOGYOTORH-OTORHINOLARYNGOLOGY
CiteScore
4.50
自引率
11.10%
发文量
44
审稿时长
12 weeks
期刊介绍: Trends in Hearing is an open access journal completely dedicated to publishing original research and reviews focusing on human hearing, hearing loss, hearing aids, auditory implants, and aural rehabilitation. Under its former name, Trends in Amplification, the journal established itself as a forum for concise explorations of all areas of translational hearing research by leaders in the field. Trends in Hearing has now expanded its focus to include original research articles, with the goal of becoming the premier venue for research related to human hearing and hearing loss.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信