{"title":"桥接性能和适应性景观以理解长期功能演变。","authors":"Monique Nouailhetas Simon, Daniel S Moen","doi":"10.1086/725416","DOIUrl":null,"url":null,"abstract":"<p><p>AbstractUnderstanding functional adaptation demands an integrative framework that captures the complex interactions between form, function, ecology, and evolutionary processes. In this review, we discuss how to integrate the following two distinct approaches to better understand functional evolution: (1) the adaptive landscape approach (ALA), aimed at finding adaptive peaks for different ecologies, and (2) the performance landscape approach (PLA), aimed at finding performance peaks for different ecologies. We focus on the Ornstein-Uhlenbeck process as the evolutionary model for the ALA and on biomechanical modeling to estimate performance for the PLA. Whereas both the ALA and the PLA have each given insight into functional adaptation, separately they cannot address how much performance contributes to fitness or whether evolutionary constraints have played a role in form-function evolution. We show that merging these approaches leads to a deeper understanding of these issues. By comparing the locations of performance and adaptive peaks, we can infer how much performance contributes to fitness in species' current environments. By testing for the relevance of history on phenotypic variation, we can infer the influence of past selection and constraints on functional adaptation. We apply this merged framework in a case study of turtle shell evolution and explain how to interpret different possible outcomes. Even though such outcomes can be quite complex, they represent the multifaceted relations among function, fitness, and constraints.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Bridging Performance and Adaptive Landscapes to Understand Long-Term Functional Evolution.\",\"authors\":\"Monique Nouailhetas Simon, Daniel S Moen\",\"doi\":\"10.1086/725416\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>AbstractUnderstanding functional adaptation demands an integrative framework that captures the complex interactions between form, function, ecology, and evolutionary processes. In this review, we discuss how to integrate the following two distinct approaches to better understand functional evolution: (1) the adaptive landscape approach (ALA), aimed at finding adaptive peaks for different ecologies, and (2) the performance landscape approach (PLA), aimed at finding performance peaks for different ecologies. We focus on the Ornstein-Uhlenbeck process as the evolutionary model for the ALA and on biomechanical modeling to estimate performance for the PLA. Whereas both the ALA and the PLA have each given insight into functional adaptation, separately they cannot address how much performance contributes to fitness or whether evolutionary constraints have played a role in form-function evolution. We show that merging these approaches leads to a deeper understanding of these issues. By comparing the locations of performance and adaptive peaks, we can infer how much performance contributes to fitness in species' current environments. By testing for the relevance of history on phenotypic variation, we can infer the influence of past selection and constraints on functional adaptation. We apply this merged framework in a case study of turtle shell evolution and explain how to interpret different possible outcomes. Even though such outcomes can be quite complex, they represent the multifaceted relations among function, fitness, and constraints.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1086/725416\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1086/725416","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Bridging Performance and Adaptive Landscapes to Understand Long-Term Functional Evolution.
AbstractUnderstanding functional adaptation demands an integrative framework that captures the complex interactions between form, function, ecology, and evolutionary processes. In this review, we discuss how to integrate the following two distinct approaches to better understand functional evolution: (1) the adaptive landscape approach (ALA), aimed at finding adaptive peaks for different ecologies, and (2) the performance landscape approach (PLA), aimed at finding performance peaks for different ecologies. We focus on the Ornstein-Uhlenbeck process as the evolutionary model for the ALA and on biomechanical modeling to estimate performance for the PLA. Whereas both the ALA and the PLA have each given insight into functional adaptation, separately they cannot address how much performance contributes to fitness or whether evolutionary constraints have played a role in form-function evolution. We show that merging these approaches leads to a deeper understanding of these issues. By comparing the locations of performance and adaptive peaks, we can infer how much performance contributes to fitness in species' current environments. By testing for the relevance of history on phenotypic variation, we can infer the influence of past selection and constraints on functional adaptation. We apply this merged framework in a case study of turtle shell evolution and explain how to interpret different possible outcomes. Even though such outcomes can be quite complex, they represent the multifaceted relations among function, fitness, and constraints.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.