Jae Min Cho , Mong Lung Steve Poon , Enbo Zhu , Jing Wang , Jonathan T. Butcher , Tzung Hsiai
{"title":"心室生长和成熟生物力学调控的定量4D成像","authors":"Jae Min Cho , Mong Lung Steve Poon , Enbo Zhu , Jing Wang , Jonathan T. Butcher , Tzung Hsiai","doi":"10.1016/j.cobme.2022.100438","DOIUrl":null,"url":null,"abstract":"<div><p>Abnormal cardiac development is intimately associated with congenital heart disease. During development, a sponge-like network of muscle fibers in the endocardium, known as trabeculation, becomes compacted. Biomechanical forces regulate myocardial differentiation and proliferation to form trabeculation, while the molecular mechanism is still enigmatic. Biomechanical forces, including intracardiac hemodynamic flow and myocardial contractile force, activate a host of molecular signaling pathways to mediate cardiac morphogenesis. While mechanotransduction pathways to initiate ventricular trabeculation is well studied, deciphering the relative importance of hemodynamic shear <em>vs</em>. mechanical contractile forces to modulate the transition from trabeculation to compaction requires advanced imaging tools and genetically tractable animal models. For these reasons, the advent of 4D multi-scale light-sheet imaging and complementary multiplex live imaging via micro-CT in the beating zebrafish heart and live chick embryos, respectively. Thus, this review highlights the complementary animal models and advanced imaging needed to elucidate the mechanotransduction underlying cardiac ventricular development.</p></div>","PeriodicalId":36748,"journal":{"name":"Current Opinion in Biomedical Engineering","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10327868/pdf/","citationCount":"0","resultStr":"{\"title\":\"Quantitative 4D imaging of biomechanical regulation of ventricular growth and maturation\",\"authors\":\"Jae Min Cho , Mong Lung Steve Poon , Enbo Zhu , Jing Wang , Jonathan T. Butcher , Tzung Hsiai\",\"doi\":\"10.1016/j.cobme.2022.100438\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Abnormal cardiac development is intimately associated with congenital heart disease. During development, a sponge-like network of muscle fibers in the endocardium, known as trabeculation, becomes compacted. Biomechanical forces regulate myocardial differentiation and proliferation to form trabeculation, while the molecular mechanism is still enigmatic. Biomechanical forces, including intracardiac hemodynamic flow and myocardial contractile force, activate a host of molecular signaling pathways to mediate cardiac morphogenesis. While mechanotransduction pathways to initiate ventricular trabeculation is well studied, deciphering the relative importance of hemodynamic shear <em>vs</em>. mechanical contractile forces to modulate the transition from trabeculation to compaction requires advanced imaging tools and genetically tractable animal models. For these reasons, the advent of 4D multi-scale light-sheet imaging and complementary multiplex live imaging via micro-CT in the beating zebrafish heart and live chick embryos, respectively. Thus, this review highlights the complementary animal models and advanced imaging needed to elucidate the mechanotransduction underlying cardiac ventricular development.</p></div>\",\"PeriodicalId\":36748,\"journal\":{\"name\":\"Current Opinion in Biomedical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10327868/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S246845112200071X\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S246845112200071X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Quantitative 4D imaging of biomechanical regulation of ventricular growth and maturation
Abnormal cardiac development is intimately associated with congenital heart disease. During development, a sponge-like network of muscle fibers in the endocardium, known as trabeculation, becomes compacted. Biomechanical forces regulate myocardial differentiation and proliferation to form trabeculation, while the molecular mechanism is still enigmatic. Biomechanical forces, including intracardiac hemodynamic flow and myocardial contractile force, activate a host of molecular signaling pathways to mediate cardiac morphogenesis. While mechanotransduction pathways to initiate ventricular trabeculation is well studied, deciphering the relative importance of hemodynamic shear vs. mechanical contractile forces to modulate the transition from trabeculation to compaction requires advanced imaging tools and genetically tractable animal models. For these reasons, the advent of 4D multi-scale light-sheet imaging and complementary multiplex live imaging via micro-CT in the beating zebrafish heart and live chick embryos, respectively. Thus, this review highlights the complementary animal models and advanced imaging needed to elucidate the mechanotransduction underlying cardiac ventricular development.