分析致心律失常心肌病的细胞死亡:PANoptosis。

Calum A MacRae
{"title":"分析致心律失常心肌病的细胞死亡:PANoptosis。","authors":"Calum A MacRae","doi":"10.20517/jca.2022.45","DOIUrl":null,"url":null,"abstract":"There are many ways for a cell to die and each of the modes of cell death has been subject to intense evolutionary selection pressure[1]. Discrete survival pathways and related programmed cell death (PCD) pathways have emerged in single cells, across communities of cells, and in all multicellular organisms. Many of the factors which trigger programmed cell death act through perturbations in homeostatic parameters such as osmotic pressure, mechanical force, temperature, oxygen tension, pH, transmembrane potential, DNA damage or metabolic substrate availability. Although they use distinctive sensor systems and signaling pathways, microbial or other injuries and their responses can often be understood using these same rubrics and the survival of whole organs and organisms can be framed through community behaviors that typically integrate heterogeneous responses to single insults across different cells or cell types[2].","PeriodicalId":75051,"journal":{"name":"The journal of cardiovascular aging","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10162710/pdf/","citationCount":"0","resultStr":"{\"title\":\"Parsing cell death in arrhythmogenic cardiomyopathy: PANoptosis.\",\"authors\":\"Calum A MacRae\",\"doi\":\"10.20517/jca.2022.45\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There are many ways for a cell to die and each of the modes of cell death has been subject to intense evolutionary selection pressure[1]. Discrete survival pathways and related programmed cell death (PCD) pathways have emerged in single cells, across communities of cells, and in all multicellular organisms. Many of the factors which trigger programmed cell death act through perturbations in homeostatic parameters such as osmotic pressure, mechanical force, temperature, oxygen tension, pH, transmembrane potential, DNA damage or metabolic substrate availability. Although they use distinctive sensor systems and signaling pathways, microbial or other injuries and their responses can often be understood using these same rubrics and the survival of whole organs and organisms can be framed through community behaviors that typically integrate heterogeneous responses to single insults across different cells or cell types[2].\",\"PeriodicalId\":75051,\"journal\":{\"name\":\"The journal of cardiovascular aging\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10162710/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The journal of cardiovascular aging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20517/jca.2022.45\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The journal of cardiovascular aging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20517/jca.2022.45","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parsing cell death in arrhythmogenic cardiomyopathy: PANoptosis.
There are many ways for a cell to die and each of the modes of cell death has been subject to intense evolutionary selection pressure[1]. Discrete survival pathways and related programmed cell death (PCD) pathways have emerged in single cells, across communities of cells, and in all multicellular organisms. Many of the factors which trigger programmed cell death act through perturbations in homeostatic parameters such as osmotic pressure, mechanical force, temperature, oxygen tension, pH, transmembrane potential, DNA damage or metabolic substrate availability. Although they use distinctive sensor systems and signaling pathways, microbial or other injuries and their responses can often be understood using these same rubrics and the survival of whole organs and organisms can be framed through community behaviors that typically integrate heterogeneous responses to single insults across different cells or cell types[2].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信