Krystyna Naumenko , Svitlana Zahorodnia , Calin V. Pop , Nodari Rizun
{"title":"银纳米颗粒对甲型流感病毒的抗病毒活性","authors":"Krystyna Naumenko , Svitlana Zahorodnia , Calin V. Pop , Nodari Rizun","doi":"10.1016/j.jve.2023.100330","DOIUrl":null,"url":null,"abstract":"<div><p>Viral infections occupy an essential place in modern medicine, particularly a large group of diseases caused by the influenza viruses. They are rapidly transmitted and mutate quickly, which can lead to significant socio-economic consequences. Silver nanoparticles (AgNPs) are considered to be an effective antimicrobial agent. This study shows that they have strong antiviral properties against the influenza A virus infection. Their absence of cytotoxicity at inhibitory concentrations demonstrates that they could be an effective antiviral agent against this virus. As AgNPs inhibit the influenza A virus replication and spread, they could also be successfully used as a post-infection virostatic agent.</p></div>","PeriodicalId":17552,"journal":{"name":"Journal of Virus Eradication","volume":"9 2","pages":"Article 100330"},"PeriodicalIF":3.5000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/12/24/main.PMC10319835.pdf","citationCount":"0","resultStr":"{\"title\":\"Antiviral activity of silver nanoparticles against the influenza A virus\",\"authors\":\"Krystyna Naumenko , Svitlana Zahorodnia , Calin V. Pop , Nodari Rizun\",\"doi\":\"10.1016/j.jve.2023.100330\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Viral infections occupy an essential place in modern medicine, particularly a large group of diseases caused by the influenza viruses. They are rapidly transmitted and mutate quickly, which can lead to significant socio-economic consequences. Silver nanoparticles (AgNPs) are considered to be an effective antimicrobial agent. This study shows that they have strong antiviral properties against the influenza A virus infection. Their absence of cytotoxicity at inhibitory concentrations demonstrates that they could be an effective antiviral agent against this virus. As AgNPs inhibit the influenza A virus replication and spread, they could also be successfully used as a post-infection virostatic agent.</p></div>\",\"PeriodicalId\":17552,\"journal\":{\"name\":\"Journal of Virus Eradication\",\"volume\":\"9 2\",\"pages\":\"Article 100330\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/12/24/main.PMC10319835.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Virus Eradication\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S205566402300016X\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Virus Eradication","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S205566402300016X","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Antiviral activity of silver nanoparticles against the influenza A virus
Viral infections occupy an essential place in modern medicine, particularly a large group of diseases caused by the influenza viruses. They are rapidly transmitted and mutate quickly, which can lead to significant socio-economic consequences. Silver nanoparticles (AgNPs) are considered to be an effective antimicrobial agent. This study shows that they have strong antiviral properties against the influenza A virus infection. Their absence of cytotoxicity at inhibitory concentrations demonstrates that they could be an effective antiviral agent against this virus. As AgNPs inhibit the influenza A virus replication and spread, they could also be successfully used as a post-infection virostatic agent.
期刊介绍:
The Journal of Virus Eradication aims to provide a specialist, open-access forum to publish work in the rapidly developing field of virus eradication. The Journal covers all human viruses, in the context of new therapeutic strategies, as well as societal eradication of viral infections with preventive interventions.
The Journal is aimed at the international community involved in the prevention and management of viral infections. It provides an academic forum for the publication of original research into viral reservoirs, viral persistence and virus eradication and ultimately development of cures.
The Journal not only publishes original research, but provides an opportunity for opinions, reviews, case studies and comments on the published literature. It focusses on evidence-based medicine as the major thrust in the successful management of viral infections.The Journal encompasses virological, immunological, epidemiological, modelling, pharmacological, pre-clinical and in vitro, as well as clinical, data including but not limited to drugs, immunotherapy and gene therapy. It is an important source of information on the development of vaccine programs and preventative measures aimed at virus eradication.