{"title":"去神经支配影响改良大鼠皮肤创面愈合。","authors":"Lu Lu, Dandan Liu, Jianghui Ying, Zuochao Yao, Qiang Hou, Hui Wang, Fazhi Qi, Wenjie Luan, Hua Jiang","doi":"10.1177/15347346221090758","DOIUrl":null,"url":null,"abstract":"<p><p><i>Introduction</i>: Lacking of normal innervation increases the chance of chronic wounds and recurrence of ulceration. Various rodent models are designed to reveal nerve-wound relationship but present many limitations to mimic human wound which heals primarily by re-epithelialization rather than contraction in rodents. This article tested a modified rat model of denervated wound healing to better mimic clinical common denervated wounds. <i>Material and Methods</i>: The wounds formed on right hind paws of 18 SD rats served as the experimental (denervated) group and the left side as contra-lateral control (non-denervated). The denervation was achieved through sciatic and femoral nerve co-transection and the control side underwent sham-surgery 3 days prior to a skin punch wound formation on both sides. Wound closure rate was calculated under digital photographing. Loss of innervation and affected healing process was confirmed by histological analyses. <i>Results</i>: Truncation of the sciatic and femur nerve successfully denervated the skin of the hind paw and resulted in a significantly declined healing rate, prolonged inflammation, weakened dermal contraction, hindered macrophage recruitment, retarded re-epithelialization and collagen deposition, decreased angiogenesis and epidermal proliferation, and persisted epidermal apoptosis compared to the innervated contra-lateral control. <i>Conclusion</i>: Wound on denervated dorsal pedis in rats can be used to study denervated skin healing in multiple histological process. We believe that this model will assist in understanding the underlying mechanism of nerve-wound relationship and identifying new treatment strategies that can be more rapidly translated into clinical practice.</p>","PeriodicalId":49181,"journal":{"name":"International Journal of Lower Extremity Wounds","volume":" ","pages":"329-341"},"PeriodicalIF":1.5000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Denervation Affected Skin Wound Healing in a Modified Rat Model.\",\"authors\":\"Lu Lu, Dandan Liu, Jianghui Ying, Zuochao Yao, Qiang Hou, Hui Wang, Fazhi Qi, Wenjie Luan, Hua Jiang\",\"doi\":\"10.1177/15347346221090758\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Introduction</i>: Lacking of normal innervation increases the chance of chronic wounds and recurrence of ulceration. Various rodent models are designed to reveal nerve-wound relationship but present many limitations to mimic human wound which heals primarily by re-epithelialization rather than contraction in rodents. This article tested a modified rat model of denervated wound healing to better mimic clinical common denervated wounds. <i>Material and Methods</i>: The wounds formed on right hind paws of 18 SD rats served as the experimental (denervated) group and the left side as contra-lateral control (non-denervated). The denervation was achieved through sciatic and femoral nerve co-transection and the control side underwent sham-surgery 3 days prior to a skin punch wound formation on both sides. Wound closure rate was calculated under digital photographing. Loss of innervation and affected healing process was confirmed by histological analyses. <i>Results</i>: Truncation of the sciatic and femur nerve successfully denervated the skin of the hind paw and resulted in a significantly declined healing rate, prolonged inflammation, weakened dermal contraction, hindered macrophage recruitment, retarded re-epithelialization and collagen deposition, decreased angiogenesis and epidermal proliferation, and persisted epidermal apoptosis compared to the innervated contra-lateral control. <i>Conclusion</i>: Wound on denervated dorsal pedis in rats can be used to study denervated skin healing in multiple histological process. We believe that this model will assist in understanding the underlying mechanism of nerve-wound relationship and identifying new treatment strategies that can be more rapidly translated into clinical practice.</p>\",\"PeriodicalId\":49181,\"journal\":{\"name\":\"International Journal of Lower Extremity Wounds\",\"volume\":\" \",\"pages\":\"329-341\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Lower Extremity Wounds\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/15347346221090758\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/3/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"DERMATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Lower Extremity Wounds","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/15347346221090758","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/3/28 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"DERMATOLOGY","Score":null,"Total":0}
Denervation Affected Skin Wound Healing in a Modified Rat Model.
Introduction: Lacking of normal innervation increases the chance of chronic wounds and recurrence of ulceration. Various rodent models are designed to reveal nerve-wound relationship but present many limitations to mimic human wound which heals primarily by re-epithelialization rather than contraction in rodents. This article tested a modified rat model of denervated wound healing to better mimic clinical common denervated wounds. Material and Methods: The wounds formed on right hind paws of 18 SD rats served as the experimental (denervated) group and the left side as contra-lateral control (non-denervated). The denervation was achieved through sciatic and femoral nerve co-transection and the control side underwent sham-surgery 3 days prior to a skin punch wound formation on both sides. Wound closure rate was calculated under digital photographing. Loss of innervation and affected healing process was confirmed by histological analyses. Results: Truncation of the sciatic and femur nerve successfully denervated the skin of the hind paw and resulted in a significantly declined healing rate, prolonged inflammation, weakened dermal contraction, hindered macrophage recruitment, retarded re-epithelialization and collagen deposition, decreased angiogenesis and epidermal proliferation, and persisted epidermal apoptosis compared to the innervated contra-lateral control. Conclusion: Wound on denervated dorsal pedis in rats can be used to study denervated skin healing in multiple histological process. We believe that this model will assist in understanding the underlying mechanism of nerve-wound relationship and identifying new treatment strategies that can be more rapidly translated into clinical practice.
期刊介绍:
The International Journal of Lower Extremity Wounds (IJLEW) is a quarterly, peer-reviewed journal publishing original research, reviews of evidence-based diagnostic techniques and methods, disease and patient management, and surgical and medical therapeutics for lower extremity wounds such as burns, stomas, ulcers, fistulas, and traumatic wounds. IJLEW also offers evaluations of assessment and monitoring tools, dressings, gels, cleansers, pressure management, footwear/orthotics, casting, and bioengineered skin. This journal is a member of the Committee on Publication Ethics (COPE).