转基因DP915635玉米在农艺和成分上与非转基因玉米相当。

IF 4.5 2区 农林科学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Jennifer A Anderson, James Mickelson, Brandon J Fast, Nathan Smith, Robert C Pauli, Carl Walker
{"title":"转基因DP915635玉米在农艺和成分上与非转基因玉米相当。","authors":"Jennifer A Anderson, James Mickelson, Brandon J Fast, Nathan Smith, Robert C Pauli, Carl Walker","doi":"10.1080/21645698.2023.2208997","DOIUrl":null,"url":null,"abstract":"<p><p>DP915635 maize was genetically modified (GM) to express the IPD079Ea protein for corn rootworm (Diabrotica spp.) control. DP915635 maize also expresses the phosphinothricin acetyltransferase (PAT) protein for tolerance to glufosinate herbicide and the phosphomannose isomerase (PMI) protein that was used as a selectable marker. A field study was conducted at ten sites in the United States and Canada during the 2019 growing season. Of the 11 agronomic endpoints that were evaluated, two of them (early stand count and days to flowering) were statistically significant compared with the control maize based on unadjusted p-values; however, these differences were not significant after FDR-adjustment of p-values. Composition analytes from DP915635 maize grain and forage (proximates, fiber, minerals, amino acids, fatty acids, vitamins, anti-nutrients, and secondary metabolites) were compared to non-GM near-isoline control maize (control maize) and non-GM commercial maize (reference maize). Statistically significant differences were observed for 7 of the 79 compositional analytes (16:1 palmitoleic acid, 18:0 stearic acid, 18:1 oleic acid, 18:2 linoleic acid, 24:0 lignoceric acid, methionine, and α-tocopherol); however, these differences were not significant after FDR-adjustment. Additionally, all of the values for composition analytes fell within the range of natural variation established from the in-study reference range, literature range, and/or tolerance interval. These results demonstrate that DP915635 is agronomically and compositionally comparable to non-GM maize represented by non-GM near-isoline control maize and non-GM commercial maize.</p>","PeriodicalId":54282,"journal":{"name":"Gm Crops & Food-Biotechnology in Agriculture and the Food Chain","volume":"14 1","pages":"1-8"},"PeriodicalIF":4.5000,"publicationDate":"2023-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10161957/pdf/","citationCount":"0","resultStr":"{\"title\":\"Genetically modified DP915635 maize is agronomically and compositionally comparable to non-genetically modified maize.\",\"authors\":\"Jennifer A Anderson, James Mickelson, Brandon J Fast, Nathan Smith, Robert C Pauli, Carl Walker\",\"doi\":\"10.1080/21645698.2023.2208997\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>DP915635 maize was genetically modified (GM) to express the IPD079Ea protein for corn rootworm (Diabrotica spp.) control. DP915635 maize also expresses the phosphinothricin acetyltransferase (PAT) protein for tolerance to glufosinate herbicide and the phosphomannose isomerase (PMI) protein that was used as a selectable marker. A field study was conducted at ten sites in the United States and Canada during the 2019 growing season. Of the 11 agronomic endpoints that were evaluated, two of them (early stand count and days to flowering) were statistically significant compared with the control maize based on unadjusted p-values; however, these differences were not significant after FDR-adjustment of p-values. Composition analytes from DP915635 maize grain and forage (proximates, fiber, minerals, amino acids, fatty acids, vitamins, anti-nutrients, and secondary metabolites) were compared to non-GM near-isoline control maize (control maize) and non-GM commercial maize (reference maize). Statistically significant differences were observed for 7 of the 79 compositional analytes (16:1 palmitoleic acid, 18:0 stearic acid, 18:1 oleic acid, 18:2 linoleic acid, 24:0 lignoceric acid, methionine, and α-tocopherol); however, these differences were not significant after FDR-adjustment. Additionally, all of the values for composition analytes fell within the range of natural variation established from the in-study reference range, literature range, and/or tolerance interval. These results demonstrate that DP915635 is agronomically and compositionally comparable to non-GM maize represented by non-GM near-isoline control maize and non-GM commercial maize.</p>\",\"PeriodicalId\":54282,\"journal\":{\"name\":\"Gm Crops & Food-Biotechnology in Agriculture and the Food Chain\",\"volume\":\"14 1\",\"pages\":\"1-8\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2023-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10161957/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gm Crops & Food-Biotechnology in Agriculture and the Food Chain\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/21645698.2023.2208997\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gm Crops & Food-Biotechnology in Agriculture and the Food Chain","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/21645698.2023.2208997","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

对DP915635玉米进行基因改造(GM),以表达用于玉米根虫(Diabrotica spp.)防治的IPD079Ea蛋白。DP915635玉米还表达对草膦酸除草剂耐受性的膦酸乙酰转移酶(PAT)蛋白和用作选择性标记的磷酸甘露糖异构酶(PMI)蛋白。2019年生长季节,在美国和加拿大的十个地点进行了实地研究。在评估的11个农艺终点中,根据未调整的p值,其中两个终点(早期林分数和开花天数)与对照玉米相比具有统计学意义;然而,在对p值进行FDR调整后,这些差异并不显著。将DP915635玉米谷物和饲料的成分分析物(接近物、纤维、矿物质、氨基酸、脂肪酸、维生素、抗营养素和次级代谢产物)与非转基因近等线对照玉米(对照玉米)和非转基因商业玉米(参比玉米)进行了比较。79种成分分析物中的7种(16:1棕榈油酸、18:0硬脂酸、18:1油酸、18:2亚油酸、24:0木质素二酸、蛋氨酸和α-生育酚)观察到统计学上的显著差异;然而,这些差异在FDR调整后并不显著。此外,成分分析物的所有值都在研究参考范围、文献范围和/或公差区间确定的自然变化范围内。这些结果表明,DP915635在农艺和成分上与以非转基因近等值线对照玉米和非转基因商业玉米为代表的非转基因玉米相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Genetically modified DP915635 maize is agronomically and compositionally comparable to non-genetically modified maize.

DP915635 maize was genetically modified (GM) to express the IPD079Ea protein for corn rootworm (Diabrotica spp.) control. DP915635 maize also expresses the phosphinothricin acetyltransferase (PAT) protein for tolerance to glufosinate herbicide and the phosphomannose isomerase (PMI) protein that was used as a selectable marker. A field study was conducted at ten sites in the United States and Canada during the 2019 growing season. Of the 11 agronomic endpoints that were evaluated, two of them (early stand count and days to flowering) were statistically significant compared with the control maize based on unadjusted p-values; however, these differences were not significant after FDR-adjustment of p-values. Composition analytes from DP915635 maize grain and forage (proximates, fiber, minerals, amino acids, fatty acids, vitamins, anti-nutrients, and secondary metabolites) were compared to non-GM near-isoline control maize (control maize) and non-GM commercial maize (reference maize). Statistically significant differences were observed for 7 of the 79 compositional analytes (16:1 palmitoleic acid, 18:0 stearic acid, 18:1 oleic acid, 18:2 linoleic acid, 24:0 lignoceric acid, methionine, and α-tocopherol); however, these differences were not significant after FDR-adjustment. Additionally, all of the values for composition analytes fell within the range of natural variation established from the in-study reference range, literature range, and/or tolerance interval. These results demonstrate that DP915635 is agronomically and compositionally comparable to non-GM maize represented by non-GM near-isoline control maize and non-GM commercial maize.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Gm Crops & Food-Biotechnology in Agriculture and the Food Chain
Gm Crops & Food-Biotechnology in Agriculture and the Food Chain Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
8.10
自引率
10.30%
发文量
22
期刊介绍: GM Crops & Food - Biotechnology in Agriculture and the Food Chain aims to publish high quality research papers, reviews, and commentaries on a wide range of topics involving genetically modified (GM) crops in agriculture and genetically modified food. The journal provides a platform for research papers addressing fundamental questions in the development, testing, and application of transgenic crops. The journal further covers topics relating to socio-economic issues, commercialization, trade and societal issues. GM Crops & Food aims to provide an international forum on all issues related to GM crops, especially toward meaningful communication between scientists and policy-makers. GM Crops & Food will publish relevant and high-impact original research with a special focus on novelty-driven studies with the potential for application. The journal also publishes authoritative review articles on current research and policy initiatives, and commentary on broad perspectives regarding genetically modified crops. The journal serves a wide readership including scientists, breeders, and policy-makers, as well as a wider community of readers (educators, policy makers, scholars, science writers and students) interested in agriculture, medicine, biotechnology, investment, and technology transfer. Topics covered include, but are not limited to: • Production and analysis of transgenic crops • Gene insertion studies • Gene silencing • Factors affecting gene expression • Post-translational analysis • Molecular farming • Field trial analysis • Commercialization of modified crops • Safety and regulatory affairs BIOLOGICAL SCIENCE AND TECHNOLOGY • Biofuels • Data from field trials • Development of transformation technology • Elimination of pollutants (Bioremediation) • Gene silencing mechanisms • Genome Editing • Herbicide resistance • Molecular farming • Pest resistance • Plant reproduction (e.g., male sterility, hybrid breeding, apomixis) • Plants with altered composition • Tolerance to abiotic stress • Transgenesis in agriculture • Biofortification and nutrients improvement • Genomic, proteomic and bioinformatics methods used for developing GM cops ECONOMIC, POLITICAL AND SOCIAL ISSUES • Commercialization • Consumer attitudes • International bodies • National and local government policies • Public perception, intellectual property, education, (bio)ethical issues • Regulation, environmental impact and containment • Socio-economic impact • Food safety and security • Risk assessments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信