{"title":"在太空旅行和地面上感知到的闪光和其他感官幻觉,包括质子和重离子疗法。","authors":"Livio Narici","doi":"10.1016/j.zemedi.2023.06.004","DOIUrl":null,"url":null,"abstract":"<div><p>Most of the astronauts experience visual illusions, apparent flashes of light (LF) in absence of light. The first reported observation of this phenomenon was in July 1969 by Buzz Aldrin, in the debriefing following the Apollo 11 mission. Several ground-based experiments in the 1970s tried to clarify the mechanisms behind these light flashes and to evaluate possible related risks. These works were supported by dedicated experiments in space on the following Apollo flights and in Low Earth Orbit (LEO). It was soon demonstrated that the LF could be caused by charged particles (present in the space radiation) traveling through the eye, and, possibly, some other visual cortical areas. In the 1990s the interest in these phenomena increased again and additional experiments in Low Earth Orbit and others ground-based were started. Recently patients undergoing proton and heavy ion therapy for eye or head and neck tumors have reported the perception of light flashes, opening a new channel to investigate these phenomena.</p><p>In this paper the many LF studies will be reviewed, presenting an historical and scientific perspective consistent with the combined set of observations, offering a single comprehensive summary aimed to provide further insights on these phenomena.</p><p>While the light flashes appear not to be a risk by themselves, they might provide information on the amount of radiation induced radicals in the astronauts’ eyes. Understanding their generation mechanisms might also support radiation countermeasures development. However, even given the substantial progress outlined in this paper, many questions related to their generation are still under debate, so additional studies are suggested. Finally, it is also conceivable that further LF investigations could provide evidence about the possible interaction of single particles in space with brain function, impacting with the crew ability to optimally perform a mission.</p></div>","PeriodicalId":54397,"journal":{"name":"Zeitschrift fur Medizinische Physik","volume":"34 1","pages":"Pages 44-63"},"PeriodicalIF":2.4000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0939388923000818/pdfft?md5=6fee664558ca86ac12cabfee7b9ee0d4&pid=1-s2.0-S0939388923000818-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Light flashes and other sensory illusions perceived in space travel and on ground, including proton and heavy ion therapies\",\"authors\":\"Livio Narici\",\"doi\":\"10.1016/j.zemedi.2023.06.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Most of the astronauts experience visual illusions, apparent flashes of light (LF) in absence of light. The first reported observation of this phenomenon was in July 1969 by Buzz Aldrin, in the debriefing following the Apollo 11 mission. Several ground-based experiments in the 1970s tried to clarify the mechanisms behind these light flashes and to evaluate possible related risks. These works were supported by dedicated experiments in space on the following Apollo flights and in Low Earth Orbit (LEO). It was soon demonstrated that the LF could be caused by charged particles (present in the space radiation) traveling through the eye, and, possibly, some other visual cortical areas. In the 1990s the interest in these phenomena increased again and additional experiments in Low Earth Orbit and others ground-based were started. Recently patients undergoing proton and heavy ion therapy for eye or head and neck tumors have reported the perception of light flashes, opening a new channel to investigate these phenomena.</p><p>In this paper the many LF studies will be reviewed, presenting an historical and scientific perspective consistent with the combined set of observations, offering a single comprehensive summary aimed to provide further insights on these phenomena.</p><p>While the light flashes appear not to be a risk by themselves, they might provide information on the amount of radiation induced radicals in the astronauts’ eyes. Understanding their generation mechanisms might also support radiation countermeasures development. However, even given the substantial progress outlined in this paper, many questions related to their generation are still under debate, so additional studies are suggested. Finally, it is also conceivable that further LF investigations could provide evidence about the possible interaction of single particles in space with brain function, impacting with the crew ability to optimally perform a mission.</p></div>\",\"PeriodicalId\":54397,\"journal\":{\"name\":\"Zeitschrift fur Medizinische Physik\",\"volume\":\"34 1\",\"pages\":\"Pages 44-63\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0939388923000818/pdfft?md5=6fee664558ca86ac12cabfee7b9ee0d4&pid=1-s2.0-S0939388923000818-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zeitschrift fur Medizinische Physik\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0939388923000818\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zeitschrift fur Medizinische Physik","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0939388923000818","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Light flashes and other sensory illusions perceived in space travel and on ground, including proton and heavy ion therapies
Most of the astronauts experience visual illusions, apparent flashes of light (LF) in absence of light. The first reported observation of this phenomenon was in July 1969 by Buzz Aldrin, in the debriefing following the Apollo 11 mission. Several ground-based experiments in the 1970s tried to clarify the mechanisms behind these light flashes and to evaluate possible related risks. These works were supported by dedicated experiments in space on the following Apollo flights and in Low Earth Orbit (LEO). It was soon demonstrated that the LF could be caused by charged particles (present in the space radiation) traveling through the eye, and, possibly, some other visual cortical areas. In the 1990s the interest in these phenomena increased again and additional experiments in Low Earth Orbit and others ground-based were started. Recently patients undergoing proton and heavy ion therapy for eye or head and neck tumors have reported the perception of light flashes, opening a new channel to investigate these phenomena.
In this paper the many LF studies will be reviewed, presenting an historical and scientific perspective consistent with the combined set of observations, offering a single comprehensive summary aimed to provide further insights on these phenomena.
While the light flashes appear not to be a risk by themselves, they might provide information on the amount of radiation induced radicals in the astronauts’ eyes. Understanding their generation mechanisms might also support radiation countermeasures development. However, even given the substantial progress outlined in this paper, many questions related to their generation are still under debate, so additional studies are suggested. Finally, it is also conceivable that further LF investigations could provide evidence about the possible interaction of single particles in space with brain function, impacting with the crew ability to optimally perform a mission.
期刊介绍:
Zeitschrift fur Medizinische Physik (Journal of Medical Physics) is an official organ of the German and Austrian Society of Medical Physic and the Swiss Society of Radiobiology and Medical Physics.The Journal is a platform for basic research and practical applications of physical procedures in medical diagnostics and therapy. The articles are reviewed following international standards of peer reviewing.
Focuses of the articles are:
-Biophysical methods in radiation therapy and nuclear medicine
-Dosimetry and radiation protection
-Radiological diagnostics and quality assurance
-Modern imaging techniques, such as computed tomography, magnetic resonance imaging, positron emission tomography
-Ultrasonography diagnostics, application of laser and UV rays
-Electronic processing of biosignals
-Artificial intelligence and machine learning in medical physics
In the Journal, the latest scientific insights find their expression in the form of original articles, reviews, technical communications, and information for the clinical practice.