新型海绵相关酸性微生物的鉴定、分类和功能表征

IF 3.3 2区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Viet Hung Nguyen , Bernd Wemheuer , Weizhi Song , Holly Bennett , Nicole Webster , Torsten Thomas
{"title":"新型海绵相关酸性微生物的鉴定、分类和功能表征","authors":"Viet Hung Nguyen ,&nbsp;Bernd Wemheuer ,&nbsp;Weizhi Song ,&nbsp;Holly Bennett ,&nbsp;Nicole Webster ,&nbsp;Torsten Thomas","doi":"10.1016/j.syapm.2023.126426","DOIUrl":null,"url":null,"abstract":"<div><p><span>Sponges are known to harbour an exceptional diversity of uncultured microorganisms, including members of the phylum </span><em>Actinobacteriota</em>. While members of the actinobacteriotal class <em>Actinomycetia</em><span> have been studied intensively due to their potential for secondary metabolite production, the sister class of </span><em>Acidimicrobiia</em> is often more abundant in sponges. However, the taxonomy, functions, and ecological roles of sponge-associated <em>Acidimicrobiia</em> are largely unknown. Here, we reconstructed and characterized 22 metagenome-assembled genomes (MAGs) of <em>Acidimicrobiia</em> from three sponge species. These MAGs represented six novel species, belonging to five genera, four families, and two orders, which are all uncharacterized (except the order <em>Acidimicrobiales</em><span>) and for which we propose nomenclature. These six uncultured species have either only been found in sponges and/or corals and have varying degrees of specificity to their host species. Functional gene profiling indicated that these six species shared a similar potential to non-symbiotic </span><em>Acidimicrobiia</em><span><span> with respect to amino acid </span>biosynthesis<span> and utilization of sulfur compounds. However, sponge-associated </span></span><em>Acidimicrobiia</em><span><span> differed from their non-symbiotic counterparts by relying predominantly on organic rather than inorganic sources of energy, and their predicted capacity to synthesise bioactive compounds or their precursors implicated in host defence. Additionally, the species possess the </span>genetic capacity to degrade aromatic compounds that are frequently found in sponges. The novel </span><em>Acidimicrobiia</em><span> may also potentially mediate host development by modulating Hedgehog signalling and by the production of serotonin, which can affect host body contractions and digestion. These results highlight unique genomic and metabolic features of six new acidimicrobiial species that potentially support a sponge-associated lifestyle.</span></p></div>","PeriodicalId":22124,"journal":{"name":"Systematic and applied microbiology","volume":"46 4","pages":"Article 126426"},"PeriodicalIF":3.3000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification, classification, and functional characterization of novel sponge-associated acidimicrobiial species\",\"authors\":\"Viet Hung Nguyen ,&nbsp;Bernd Wemheuer ,&nbsp;Weizhi Song ,&nbsp;Holly Bennett ,&nbsp;Nicole Webster ,&nbsp;Torsten Thomas\",\"doi\":\"10.1016/j.syapm.2023.126426\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Sponges are known to harbour an exceptional diversity of uncultured microorganisms, including members of the phylum </span><em>Actinobacteriota</em>. While members of the actinobacteriotal class <em>Actinomycetia</em><span> have been studied intensively due to their potential for secondary metabolite production, the sister class of </span><em>Acidimicrobiia</em> is often more abundant in sponges. However, the taxonomy, functions, and ecological roles of sponge-associated <em>Acidimicrobiia</em> are largely unknown. Here, we reconstructed and characterized 22 metagenome-assembled genomes (MAGs) of <em>Acidimicrobiia</em> from three sponge species. These MAGs represented six novel species, belonging to five genera, four families, and two orders, which are all uncharacterized (except the order <em>Acidimicrobiales</em><span>) and for which we propose nomenclature. These six uncultured species have either only been found in sponges and/or corals and have varying degrees of specificity to their host species. Functional gene profiling indicated that these six species shared a similar potential to non-symbiotic </span><em>Acidimicrobiia</em><span><span> with respect to amino acid </span>biosynthesis<span> and utilization of sulfur compounds. However, sponge-associated </span></span><em>Acidimicrobiia</em><span><span> differed from their non-symbiotic counterparts by relying predominantly on organic rather than inorganic sources of energy, and their predicted capacity to synthesise bioactive compounds or their precursors implicated in host defence. Additionally, the species possess the </span>genetic capacity to degrade aromatic compounds that are frequently found in sponges. The novel </span><em>Acidimicrobiia</em><span> may also potentially mediate host development by modulating Hedgehog signalling and by the production of serotonin, which can affect host body contractions and digestion. These results highlight unique genomic and metabolic features of six new acidimicrobiial species that potentially support a sponge-associated lifestyle.</span></p></div>\",\"PeriodicalId\":22124,\"journal\":{\"name\":\"Systematic and applied microbiology\",\"volume\":\"46 4\",\"pages\":\"Article 126426\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Systematic and applied microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0723202023000358\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systematic and applied microbiology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0723202023000358","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

众所周知,海绵中含有异常多样的未培养微生物,包括放线菌门的成员。虽然放线菌类放线菌的成员由于其产生次级代谢产物的潜力而受到了深入研究,但酸性微生物菌的姐妹类通常在海绵中更为丰富。然而,与海绵相关的酸性微生物的分类、功能和生态作用在很大程度上是未知的。在这里,我们从三种海绵物种中重建并表征了酸性微生物的22个宏基因组组装基因组(MAG)。这些MAG代表了六个新物种,属于五个属、四个科和两个目,它们都没有特征(酸性微生物目除外),我们提出了命名法。这六种未培养的物种要么只在海绵和/或珊瑚中发现,对宿主物种具有不同程度的特异性。功能基因图谱表明,这六个物种在氨基酸生物合成和硫化合物利用方面与非共生酸性微生物具有相似的潜力。然而,海绵相关的酸性微生物与非共生微生物的不同之处在于,它们主要依赖有机而非无机能源,以及它们合成生物活性化合物或与宿主防御有关的前体的预测能力。此外,该物种具有降解海绵中常见的芳香化合物的遗传能力。新型酸性微生物也可能通过调节Hedgehog信号传导和血清素的产生来介导宿主的发育,血清素可以影响宿主的收缩和消化。这些结果突出了六种新的酸性微生物物种的独特基因组和代谢特征,这些物种可能支持海绵相关的生活方式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identification, classification, and functional characterization of novel sponge-associated acidimicrobiial species

Sponges are known to harbour an exceptional diversity of uncultured microorganisms, including members of the phylum Actinobacteriota. While members of the actinobacteriotal class Actinomycetia have been studied intensively due to their potential for secondary metabolite production, the sister class of Acidimicrobiia is often more abundant in sponges. However, the taxonomy, functions, and ecological roles of sponge-associated Acidimicrobiia are largely unknown. Here, we reconstructed and characterized 22 metagenome-assembled genomes (MAGs) of Acidimicrobiia from three sponge species. These MAGs represented six novel species, belonging to five genera, four families, and two orders, which are all uncharacterized (except the order Acidimicrobiales) and for which we propose nomenclature. These six uncultured species have either only been found in sponges and/or corals and have varying degrees of specificity to their host species. Functional gene profiling indicated that these six species shared a similar potential to non-symbiotic Acidimicrobiia with respect to amino acid biosynthesis and utilization of sulfur compounds. However, sponge-associated Acidimicrobiia differed from their non-symbiotic counterparts by relying predominantly on organic rather than inorganic sources of energy, and their predicted capacity to synthesise bioactive compounds or their precursors implicated in host defence. Additionally, the species possess the genetic capacity to degrade aromatic compounds that are frequently found in sponges. The novel Acidimicrobiia may also potentially mediate host development by modulating Hedgehog signalling and by the production of serotonin, which can affect host body contractions and digestion. These results highlight unique genomic and metabolic features of six new acidimicrobiial species that potentially support a sponge-associated lifestyle.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Systematic and applied microbiology
Systematic and applied microbiology 生物-生物工程与应用微生物
CiteScore
7.50
自引率
5.90%
发文量
57
审稿时长
22 days
期刊介绍: Systematic and Applied Microbiology deals with various aspects of microbial diversity and systematics of prokaryotes. It focuses on Bacteria and Archaea; eukaryotic microorganisms will only be considered in rare cases. The journal perceives a broad understanding of microbial diversity and encourages the submission of manuscripts from the following branches of microbiology:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信