{"title":"瞄准基因组中诱导的局部病变(TILLING):快速跟踪作物育种的进展和机遇。","authors":"Dharmendra Singh, Priya Chaudhary, Jyoti Taunk, Chandan Kumar Singh, Viswanathan Chinnusamy, Amitha Mithra Sevanthi, Vikram Jeet Singh, Madan Pal","doi":"10.1080/07388551.2023.2231630","DOIUrl":null,"url":null,"abstract":"<p><p>The intensification of food production <i>via</i> conventional crop breeding alone is inadequate to cater for global hunger. The development of precise and expeditious high throughput reverse genetics approaches has hugely benefited modern plant breeding programs. Targeting Induced Local Lesions in Genomes (TILLING) is one such reverse genetics approach which employs chemical/physical mutagenesis to create new genetic sources and identifies superior/novel alleles. Owing to technical limitations and sectional applicability of the original TILLING protocol, it has been timely modified. Successions include: EcoTILLING, Double stranded EcoTILLING (DEcoTILLING), Self-EcoTILLING, Individualized TILLING (iTILLING), Deletion-TILLING (De-TILLING), PolyTILLING, and VeggieTILLING. This has widened its application to a variety of crops and needs. They can characterize mutations in coding as well as non-coding regions and can overcome complexities associated with the large genomes. Combining next generation sequencing tools with the existing TILLING protocols has enabled screening of huge germplasm collections and mutant populations for the target genes. <i>In silico</i> TILLING platforms have transformed TILLING into an exciting breeding approach. The present review outlines these multifarious TILLING modifications for precise mutation detection and their application in advance breeding programmes together with relevant case studies. Appropriate use of these protocols will open up new avenues for crop improvement in the twenty first century.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":null,"pages":null},"PeriodicalIF":8.1000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Targeting Induced Local Lesions in Genomes (TILLING): advances and opportunities for fast tracking crop breeding.\",\"authors\":\"Dharmendra Singh, Priya Chaudhary, Jyoti Taunk, Chandan Kumar Singh, Viswanathan Chinnusamy, Amitha Mithra Sevanthi, Vikram Jeet Singh, Madan Pal\",\"doi\":\"10.1080/07388551.2023.2231630\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The intensification of food production <i>via</i> conventional crop breeding alone is inadequate to cater for global hunger. The development of precise and expeditious high throughput reverse genetics approaches has hugely benefited modern plant breeding programs. Targeting Induced Local Lesions in Genomes (TILLING) is one such reverse genetics approach which employs chemical/physical mutagenesis to create new genetic sources and identifies superior/novel alleles. Owing to technical limitations and sectional applicability of the original TILLING protocol, it has been timely modified. Successions include: EcoTILLING, Double stranded EcoTILLING (DEcoTILLING), Self-EcoTILLING, Individualized TILLING (iTILLING), Deletion-TILLING (De-TILLING), PolyTILLING, and VeggieTILLING. This has widened its application to a variety of crops and needs. They can characterize mutations in coding as well as non-coding regions and can overcome complexities associated with the large genomes. Combining next generation sequencing tools with the existing TILLING protocols has enabled screening of huge germplasm collections and mutant populations for the target genes. <i>In silico</i> TILLING platforms have transformed TILLING into an exciting breeding approach. The present review outlines these multifarious TILLING modifications for precise mutation detection and their application in advance breeding programmes together with relevant case studies. Appropriate use of these protocols will open up new avenues for crop improvement in the twenty first century.</p>\",\"PeriodicalId\":10752,\"journal\":{\"name\":\"Critical Reviews in Biotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Critical Reviews in Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/07388551.2023.2231630\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/7/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Reviews in Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/07388551.2023.2231630","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/7/16 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Targeting Induced Local Lesions in Genomes (TILLING): advances and opportunities for fast tracking crop breeding.
The intensification of food production via conventional crop breeding alone is inadequate to cater for global hunger. The development of precise and expeditious high throughput reverse genetics approaches has hugely benefited modern plant breeding programs. Targeting Induced Local Lesions in Genomes (TILLING) is one such reverse genetics approach which employs chemical/physical mutagenesis to create new genetic sources and identifies superior/novel alleles. Owing to technical limitations and sectional applicability of the original TILLING protocol, it has been timely modified. Successions include: EcoTILLING, Double stranded EcoTILLING (DEcoTILLING), Self-EcoTILLING, Individualized TILLING (iTILLING), Deletion-TILLING (De-TILLING), PolyTILLING, and VeggieTILLING. This has widened its application to a variety of crops and needs. They can characterize mutations in coding as well as non-coding regions and can overcome complexities associated with the large genomes. Combining next generation sequencing tools with the existing TILLING protocols has enabled screening of huge germplasm collections and mutant populations for the target genes. In silico TILLING platforms have transformed TILLING into an exciting breeding approach. The present review outlines these multifarious TILLING modifications for precise mutation detection and their application in advance breeding programmes together with relevant case studies. Appropriate use of these protocols will open up new avenues for crop improvement in the twenty first century.
期刊介绍:
Biotechnological techniques, from fermentation to genetic manipulation, have become increasingly relevant to the food and beverage, fuel production, chemical and pharmaceutical, and waste management industries. Consequently, academic as well as industrial institutions need to keep abreast of the concepts, data, and methodologies evolved by continuing research. This journal provides a forum of critical evaluation of recent and current publications and, periodically, for state-of-the-art reports from various geographic areas around the world. Contributing authors are recognized experts in their fields, and each article is reviewed by an objective expert to ensure accuracy and objectivity of the presentation.