进入发育科学瞳孔测量多元宇宙的第一步。

IF 4.6 2区 心理学 Q1 PSYCHOLOGY, EXPERIMENTAL
Behavior Research Methods Pub Date : 2024-04-01 Epub Date: 2023-07-13 DOI:10.3758/s13428-023-02172-8
Giulia Calignano, Paolo Girardi, Gianmarco Altoè
{"title":"进入发育科学瞳孔测量多元宇宙的第一步。","authors":"Giulia Calignano, Paolo Girardi, Gianmarco Altoè","doi":"10.3758/s13428-023-02172-8","DOIUrl":null,"url":null,"abstract":"<p><p>Pupillometry has been widely implemented to investigate cognitive functioning since infancy. Like most psychophysiological and behavioral measures, it implies hierarchical levels of arbitrariness in preprocessing before statistical data analysis. By means of an illustrative example, we checked the robustness of the results of a familiarization procedure that compared the impact of audiovisual and visual stimuli in 12-month-olds. We adopted a multiverse approach to pupillometry data analysis to explore the role of (1) the preprocessing phase, that is, handling of extreme values, selection of the areas of interest, management of blinks, baseline correction, participant inclusion/exclusion and (2) the modeling structure, that is, the incorporation of smoothers, fixed and random effects structure, in guiding the parameter estimation. The multiverse of analyses shows how the preprocessing steps influenced the regression results, and when visual stimuli plausibly predicted an increase of resource allocation compared with audiovisual stimuli. Importantly, smoothing time in statistical models increased the plausibility of the results compared to those nested models that do not weigh the impact of time. Finally, we share theoretical and methodological tools to move the first steps into (rather than being afraid of) the inherent uncertainty of infant pupillometry.</p>","PeriodicalId":8717,"journal":{"name":"Behavior Research Methods","volume":" ","pages":"3346-3365"},"PeriodicalIF":4.6000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11133157/pdf/","citationCount":"0","resultStr":"{\"title\":\"First steps into the pupillometry multiverse of developmental science.\",\"authors\":\"Giulia Calignano, Paolo Girardi, Gianmarco Altoè\",\"doi\":\"10.3758/s13428-023-02172-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Pupillometry has been widely implemented to investigate cognitive functioning since infancy. Like most psychophysiological and behavioral measures, it implies hierarchical levels of arbitrariness in preprocessing before statistical data analysis. By means of an illustrative example, we checked the robustness of the results of a familiarization procedure that compared the impact of audiovisual and visual stimuli in 12-month-olds. We adopted a multiverse approach to pupillometry data analysis to explore the role of (1) the preprocessing phase, that is, handling of extreme values, selection of the areas of interest, management of blinks, baseline correction, participant inclusion/exclusion and (2) the modeling structure, that is, the incorporation of smoothers, fixed and random effects structure, in guiding the parameter estimation. The multiverse of analyses shows how the preprocessing steps influenced the regression results, and when visual stimuli plausibly predicted an increase of resource allocation compared with audiovisual stimuli. Importantly, smoothing time in statistical models increased the plausibility of the results compared to those nested models that do not weigh the impact of time. Finally, we share theoretical and methodological tools to move the first steps into (rather than being afraid of) the inherent uncertainty of infant pupillometry.</p>\",\"PeriodicalId\":8717,\"journal\":{\"name\":\"Behavior Research Methods\",\"volume\":\" \",\"pages\":\"3346-3365\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11133157/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Behavior Research Methods\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.3758/s13428-023-02172-8\",\"RegionNum\":2,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/7/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"PSYCHOLOGY, EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Behavior Research Methods","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.3758/s13428-023-02172-8","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/7/13 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PSYCHOLOGY, EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

自婴儿时期起,瞳孔测量法就被广泛用于研究认知功能。与大多数心理生理学和行为学测量方法一样,瞳孔测量法在统计数据分析前的预处理过程中也存在一定程度的随意性。通过一个示例,我们检验了熟悉程序结果的稳健性,该程序比较了视听刺激和视觉刺激对 12 个月大儿童的影响。我们采用多元宇宙方法对瞳孔测量数据进行分析,以探讨(1)预处理阶段(即处理极值、选择感兴趣的区域、管理眨眼、基线校正、纳入/排除参与者)和(2)建模结构(即纳入平滑器、固定效应和随机效应结构)在指导参数估计中的作用。多元分析显示了预处理步骤对回归结果的影响,以及与视听刺激相比,视觉刺激何时能够合理预测资源分配的增加。重要的是,与那些不考虑时间影响的嵌套模型相比,在统计模型中平滑时间增加了结果的可信度。最后,我们还分享了一些理论和方法工具,以便在婴儿瞳孔测量固有的不确定性方面迈出第一步(而不是害怕)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
First steps into the pupillometry multiverse of developmental science.

Pupillometry has been widely implemented to investigate cognitive functioning since infancy. Like most psychophysiological and behavioral measures, it implies hierarchical levels of arbitrariness in preprocessing before statistical data analysis. By means of an illustrative example, we checked the robustness of the results of a familiarization procedure that compared the impact of audiovisual and visual stimuli in 12-month-olds. We adopted a multiverse approach to pupillometry data analysis to explore the role of (1) the preprocessing phase, that is, handling of extreme values, selection of the areas of interest, management of blinks, baseline correction, participant inclusion/exclusion and (2) the modeling structure, that is, the incorporation of smoothers, fixed and random effects structure, in guiding the parameter estimation. The multiverse of analyses shows how the preprocessing steps influenced the regression results, and when visual stimuli plausibly predicted an increase of resource allocation compared with audiovisual stimuli. Importantly, smoothing time in statistical models increased the plausibility of the results compared to those nested models that do not weigh the impact of time. Finally, we share theoretical and methodological tools to move the first steps into (rather than being afraid of) the inherent uncertainty of infant pupillometry.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.30
自引率
9.30%
发文量
266
期刊介绍: Behavior Research Methods publishes articles concerned with the methods, techniques, and instrumentation of research in experimental psychology. The journal focuses particularly on the use of computer technology in psychological research. An annual special issue is devoted to this field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信