神经退行性疾病认知改善的伽玛感觉夹带:未来的机遇和挑战。

IF 2.6 3区 医学 Q2 BEHAVIORAL SCIENCES
Prangya Parimita Sahu, Philip Tseng
{"title":"神经退行性疾病认知改善的伽玛感觉夹带:未来的机遇和挑战。","authors":"Prangya Parimita Sahu,&nbsp;Philip Tseng","doi":"10.3389/fnint.2023.1146687","DOIUrl":null,"url":null,"abstract":"<p><p>Neural oscillations have been categorized into various frequency bands that are mechanistically associated with different cognitive functions. Specifically, the gamma band frequency is widely implicated to be involved in a wide range of cognitive processes. As such, decreased gamma oscillation has been associated with cognitive declines in neurological diseases, such as memory dysfunction in Alzheimer's disease (AD). Recently, studies have attempted to artificially induce gamma oscillations by using 40 Hz sensory entrainment stimulation. These studies reported attenuation of amyloid load, hyper-phosphorylation of tau protein, and improvement in overall cognition in both AD patients and mouse models. In this review, we discuss the advancements in the use of sensory stimulation in animal models of AD and as a therapeutic strategy in AD patients. We also discuss future opportunities, as well as challenges, for using such strategies in other neurodegenerative and neuropsychiatric diseases.</p>","PeriodicalId":56016,"journal":{"name":"Frontiers in Integrative Neuroscience","volume":"17 ","pages":"1146687"},"PeriodicalIF":2.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10149720/pdf/","citationCount":"2","resultStr":"{\"title\":\"Gamma sensory entrainment for cognitive improvement in neurodegenerative diseases: opportunities and challenges ahead.\",\"authors\":\"Prangya Parimita Sahu,&nbsp;Philip Tseng\",\"doi\":\"10.3389/fnint.2023.1146687\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Neural oscillations have been categorized into various frequency bands that are mechanistically associated with different cognitive functions. Specifically, the gamma band frequency is widely implicated to be involved in a wide range of cognitive processes. As such, decreased gamma oscillation has been associated with cognitive declines in neurological diseases, such as memory dysfunction in Alzheimer's disease (AD). Recently, studies have attempted to artificially induce gamma oscillations by using 40 Hz sensory entrainment stimulation. These studies reported attenuation of amyloid load, hyper-phosphorylation of tau protein, and improvement in overall cognition in both AD patients and mouse models. In this review, we discuss the advancements in the use of sensory stimulation in animal models of AD and as a therapeutic strategy in AD patients. We also discuss future opportunities, as well as challenges, for using such strategies in other neurodegenerative and neuropsychiatric diseases.</p>\",\"PeriodicalId\":56016,\"journal\":{\"name\":\"Frontiers in Integrative Neuroscience\",\"volume\":\"17 \",\"pages\":\"1146687\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10149720/pdf/\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Integrative Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3389/fnint.2023.1146687\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BEHAVIORAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Integrative Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fnint.2023.1146687","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 2

摘要

神经振荡被分为不同的频带,这些频带与不同的认知功能有机械上的联系。具体来说,伽马波段频率被广泛地牵连到广泛的认知过程中。因此,伽马振荡的减少与神经系统疾病的认知能力下降有关,例如阿尔茨海默病(AD)的记忆功能障碍。最近,研究试图通过使用40赫兹的感官刺激人工诱导伽马振荡。这些研究报告了AD患者和小鼠模型中淀粉样蛋白负荷的衰减,tau蛋白的超磷酸化和整体认知的改善。在这篇综述中,我们讨论了在阿尔茨海默病动物模型中使用感觉刺激以及作为阿尔茨海默病患者治疗策略的进展。我们还讨论了在其他神经退行性疾病和神经精神疾病中使用这种策略的未来机会和挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gamma sensory entrainment for cognitive improvement in neurodegenerative diseases: opportunities and challenges ahead.

Neural oscillations have been categorized into various frequency bands that are mechanistically associated with different cognitive functions. Specifically, the gamma band frequency is widely implicated to be involved in a wide range of cognitive processes. As such, decreased gamma oscillation has been associated with cognitive declines in neurological diseases, such as memory dysfunction in Alzheimer's disease (AD). Recently, studies have attempted to artificially induce gamma oscillations by using 40 Hz sensory entrainment stimulation. These studies reported attenuation of amyloid load, hyper-phosphorylation of tau protein, and improvement in overall cognition in both AD patients and mouse models. In this review, we discuss the advancements in the use of sensory stimulation in animal models of AD and as a therapeutic strategy in AD patients. We also discuss future opportunities, as well as challenges, for using such strategies in other neurodegenerative and neuropsychiatric diseases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers in Integrative Neuroscience
Frontiers in Integrative Neuroscience Neuroscience-Cellular and Molecular Neuroscience
CiteScore
4.60
自引率
2.90%
发文量
148
审稿时长
14 weeks
期刊介绍: Frontiers in Integrative Neuroscience publishes rigorously peer-reviewed research that synthesizes multiple facets of brain structure and function, to better understand how multiple diverse functions are integrated to produce complex behaviors. Led by an outstanding Editorial Board of international experts, this multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide. Our goal is to publish research related to furthering the understanding of the integrative mechanisms underlying brain functioning across one or more interacting levels of neural organization. In most real life experiences, sensory inputs from several modalities converge and interact in a manner that influences perception and actions generating purposeful and social behaviors. The journal is therefore focused on the primary questions of how multiple sensory, cognitive and emotional processes merge to produce coordinated complex behavior. It is questions such as this that cannot be answered at a single level – an ion channel, a neuron or a synapse – that we wish to focus on. In Frontiers in Integrative Neuroscience we welcome in vitro or in vivo investigations across the molecular, cellular, and systems and behavioral level. Research in any species and at any stage of development and aging that are focused at understanding integration mechanisms underlying emergent properties of the brain and behavior are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信