柔性气动执行器的可调折叠装配策略。

IF 6.4 2区 计算机科学 Q1 ROBOTICS
Soft Robotics Pub Date : 2023-12-01 Epub Date: 2023-07-12 DOI:10.1089/soro.2022.0166
Kaihang Zhang, Yaowei Fan, Shiming Shen, Xuxu Yang, Tiefeng Li
{"title":"柔性气动执行器的可调折叠装配策略。","authors":"Kaihang Zhang, Yaowei Fan, Shiming Shen, Xuxu Yang, Tiefeng Li","doi":"10.1089/soro.2022.0166","DOIUrl":null,"url":null,"abstract":"<p><p>With intrinsic compliance, soft pneumatic actuators are widely utilized in delicate tasks. However, complex fabrication approaches and limited tunability are still problems. Here, we propose a tunable folding assembly strategy to design and fabricate soft pneumatic actuators called FASPAs (folding assembly soft pneumatic actuators). A FASPA consists only of a folded silicone tube constrained by rubber bands. By designing local stiffness and folding manner, the FASPA can be designed to achieve four configurations, pure bending, discontinuous-curvature bending, helix, and discontinuous-curvature helix. Analytical models are developed to predict the deformation and the tip trajectory of different configurations. Meanwhile, experiments are performed to verify the models. The stiffness, load capacity, output force, and step response are measured, and fatigue tests are performed. Further, grippers with single, double, and triple fingers are assembled by utilizing different types of FASPAs. As such, objects with different shapes, sizes, and weights can be easily grasped. The folding assembly strategy is a promising method to design and fabricate soft robots with complex configurations to complete tough tasks in harsh environments.</p>","PeriodicalId":48685,"journal":{"name":"Soft Robotics","volume":" ","pages":"1099-1114"},"PeriodicalIF":6.4000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tunable Folding Assembly Strategy for Soft Pneumatic Actuators.\",\"authors\":\"Kaihang Zhang, Yaowei Fan, Shiming Shen, Xuxu Yang, Tiefeng Li\",\"doi\":\"10.1089/soro.2022.0166\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>With intrinsic compliance, soft pneumatic actuators are widely utilized in delicate tasks. However, complex fabrication approaches and limited tunability are still problems. Here, we propose a tunable folding assembly strategy to design and fabricate soft pneumatic actuators called FASPAs (folding assembly soft pneumatic actuators). A FASPA consists only of a folded silicone tube constrained by rubber bands. By designing local stiffness and folding manner, the FASPA can be designed to achieve four configurations, pure bending, discontinuous-curvature bending, helix, and discontinuous-curvature helix. Analytical models are developed to predict the deformation and the tip trajectory of different configurations. Meanwhile, experiments are performed to verify the models. The stiffness, load capacity, output force, and step response are measured, and fatigue tests are performed. Further, grippers with single, double, and triple fingers are assembled by utilizing different types of FASPAs. As such, objects with different shapes, sizes, and weights can be easily grasped. The folding assembly strategy is a promising method to design and fabricate soft robots with complex configurations to complete tough tasks in harsh environments.</p>\",\"PeriodicalId\":48685,\"journal\":{\"name\":\"Soft Robotics\",\"volume\":\" \",\"pages\":\"1099-1114\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soft Robotics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1089/soro.2022.0166\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/7/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft Robotics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1089/soro.2022.0166","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/7/12 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

摘要

软气动执行机构具有内在顺应性,在复杂任务中得到广泛应用。然而,复杂的制造方法和有限的可调性仍然是问题。在此,我们提出了一种可调折叠装配策略来设计和制造柔性气动执行器FASPAs(折叠装配软气动执行器)。FASPA仅由一根由橡皮筋约束的折叠硅胶管组成。通过局部刚度和折叠方式的设计,FASPA可以实现纯弯曲、不连续弯曲、螺旋和不连续弯曲四种构型。建立了分析模型来预测不同结构的变形和尖端轨迹。同时,通过实验对模型进行了验证。测量了刚度、承载能力、输出力和阶跃响应,并进行了疲劳试验。此外,通过使用不同类型的FASPAs组装具有单指、双指和三指的夹持器。因此,不同形状、大小和重量的物体可以很容易地抓住。折叠装配策略是一种很有前途的方法来设计和制造具有复杂结构的软机器人,以完成恶劣环境下的艰巨任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tunable Folding Assembly Strategy for Soft Pneumatic Actuators.

With intrinsic compliance, soft pneumatic actuators are widely utilized in delicate tasks. However, complex fabrication approaches and limited tunability are still problems. Here, we propose a tunable folding assembly strategy to design and fabricate soft pneumatic actuators called FASPAs (folding assembly soft pneumatic actuators). A FASPA consists only of a folded silicone tube constrained by rubber bands. By designing local stiffness and folding manner, the FASPA can be designed to achieve four configurations, pure bending, discontinuous-curvature bending, helix, and discontinuous-curvature helix. Analytical models are developed to predict the deformation and the tip trajectory of different configurations. Meanwhile, experiments are performed to verify the models. The stiffness, load capacity, output force, and step response are measured, and fatigue tests are performed. Further, grippers with single, double, and triple fingers are assembled by utilizing different types of FASPAs. As such, objects with different shapes, sizes, and weights can be easily grasped. The folding assembly strategy is a promising method to design and fabricate soft robots with complex configurations to complete tough tasks in harsh environments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Soft Robotics
Soft Robotics ROBOTICS-
CiteScore
15.50
自引率
5.10%
发文量
128
期刊介绍: Soft Robotics (SoRo) stands as a premier robotics journal, showcasing top-tier, peer-reviewed research on the forefront of soft and deformable robotics. Encompassing flexible electronics, materials science, computer science, and biomechanics, it pioneers breakthroughs in robotic technology capable of safe interaction with living systems and navigating complex environments, natural or human-made. With a multidisciplinary approach, SoRo integrates advancements in biomedical engineering, biomechanics, mathematical modeling, biopolymer chemistry, computer science, and tissue engineering, offering comprehensive insights into constructing adaptable devices that can undergo significant changes in shape and size. This transformative technology finds critical applications in surgery, assistive healthcare devices, emergency search and rescue, space instrument repair, mine detection, and beyond.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信