动力膝关节-踝关节假体楼梯上升的相位可变控制。

Ross J Cortino, Edgar Bolívar-Nieto, T Kevin Best, Robert D Gregg
{"title":"动力膝关节-踝关节假体楼梯上升的相位可变控制。","authors":"Ross J Cortino,&nbsp;Edgar Bolívar-Nieto,&nbsp;T Kevin Best,&nbsp;Robert D Gregg","doi":"10.1109/icra46639.2022.9811578","DOIUrl":null,"url":null,"abstract":"<p><p>Passive prostheses cannot provide the net positive work required at the knee and ankle for step-over stair ascent. Powered prostheses can provide this net positive work, but user synchronization of joint motion and power input are critical to enabling natural stair ascent gaits. In this work, we build on previous phase variable-based control methods for walking and propose a stair ascent controller driven by the motion of the user's residual thigh. We use reference kinematics from an able-bodied dataset to produce knee and ankle joint trajectories parameterized by gait phase. We redefine the gait cycle to begin at the point of maximum hip flexion instead of heel strike to improve the phase estimate. Able-bodied bypass adapter experiments demonstrate that the phase variable controller replicates normative able-bodied kinematic trajectories with a root mean squared error of 12.66° and 2.64° for the knee and ankle, respectively. The knee and ankle joints provided on average 0.39 J/kg and 0.21 J/kg per stride, compared to the normative averages of 0.34 J/kg and 0.21 J/kg, respectively. Thus, this controller allows powered knee-ankle prostheses to perform net positive mechanical work to assist stair ascent.</p>","PeriodicalId":73286,"journal":{"name":"IEEE International Conference on Robotics and Automation : ICRA : [proceedings]. IEEE International Conference on Robotics and Automation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9432737/pdf/nihms-1785127.pdf","citationCount":"9","resultStr":"{\"title\":\"Stair Ascent Phase-Variable Control of a Powered Knee-Ankle Prosthesis.\",\"authors\":\"Ross J Cortino,&nbsp;Edgar Bolívar-Nieto,&nbsp;T Kevin Best,&nbsp;Robert D Gregg\",\"doi\":\"10.1109/icra46639.2022.9811578\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Passive prostheses cannot provide the net positive work required at the knee and ankle for step-over stair ascent. Powered prostheses can provide this net positive work, but user synchronization of joint motion and power input are critical to enabling natural stair ascent gaits. In this work, we build on previous phase variable-based control methods for walking and propose a stair ascent controller driven by the motion of the user's residual thigh. We use reference kinematics from an able-bodied dataset to produce knee and ankle joint trajectories parameterized by gait phase. We redefine the gait cycle to begin at the point of maximum hip flexion instead of heel strike to improve the phase estimate. Able-bodied bypass adapter experiments demonstrate that the phase variable controller replicates normative able-bodied kinematic trajectories with a root mean squared error of 12.66° and 2.64° for the knee and ankle, respectively. The knee and ankle joints provided on average 0.39 J/kg and 0.21 J/kg per stride, compared to the normative averages of 0.34 J/kg and 0.21 J/kg, respectively. Thus, this controller allows powered knee-ankle prostheses to perform net positive mechanical work to assist stair ascent.</p>\",\"PeriodicalId\":73286,\"journal\":{\"name\":\"IEEE International Conference on Robotics and Automation : ICRA : [proceedings]. IEEE International Conference on Robotics and Automation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9432737/pdf/nihms-1785127.pdf\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE International Conference on Robotics and Automation : ICRA : [proceedings]. IEEE International Conference on Robotics and Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/icra46639.2022.9811578\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Conference on Robotics and Automation : ICRA : [proceedings]. IEEE International Conference on Robotics and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icra46639.2022.9811578","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

被动假体不能提供膝关节和踝关节上台阶所需的净功。动力假肢可以提供这种净功,但用户关节运动和动力输入的同步对于实现自然的楼梯上升步态至关重要。在这项工作中,我们在先前基于相位变量的步行控制方法的基础上,提出了一个由用户剩余大腿运动驱动的楼梯上升控制器。我们使用来自健全身体数据集的参考运动学来产生由步态阶段参数化的膝关节和踝关节轨迹。我们重新定义步态周期,从髋部最大屈曲点开始,而不是脚跟撞击点,以改善相位估计。仿真实验表明,相位变量控制器复制了规范的健全运动轨迹,膝关节和踝关节的均方根误差分别为12.66°和2.64°。膝关节和踝关节每跨步平均提供0.39 J/kg和0.21 J/kg,而标准平均值分别为0.34 J/kg和0.21 J/kg。因此,该控制器允许动力膝踝假体执行净正机械功来辅助楼梯上升。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Stair Ascent Phase-Variable Control of a Powered Knee-Ankle Prosthesis.

Stair Ascent Phase-Variable Control of a Powered Knee-Ankle Prosthesis.

Stair Ascent Phase-Variable Control of a Powered Knee-Ankle Prosthesis.

Passive prostheses cannot provide the net positive work required at the knee and ankle for step-over stair ascent. Powered prostheses can provide this net positive work, but user synchronization of joint motion and power input are critical to enabling natural stair ascent gaits. In this work, we build on previous phase variable-based control methods for walking and propose a stair ascent controller driven by the motion of the user's residual thigh. We use reference kinematics from an able-bodied dataset to produce knee and ankle joint trajectories parameterized by gait phase. We redefine the gait cycle to begin at the point of maximum hip flexion instead of heel strike to improve the phase estimate. Able-bodied bypass adapter experiments demonstrate that the phase variable controller replicates normative able-bodied kinematic trajectories with a root mean squared error of 12.66° and 2.64° for the knee and ankle, respectively. The knee and ankle joints provided on average 0.39 J/kg and 0.21 J/kg per stride, compared to the normative averages of 0.34 J/kg and 0.21 J/kg, respectively. Thus, this controller allows powered knee-ankle prostheses to perform net positive mechanical work to assist stair ascent.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信