Farhad Hatami, Alex Ocampo, Gordon Graham, Thomas E Nichols, Habib Ganjgahi
{"title":"带有协变量的连续时间马尔可夫模型的可扩展方法","authors":"Farhad Hatami, Alex Ocampo, Gordon Graham, Thomas E Nichols, Habib Ganjgahi","doi":"10.1093/biostatistics/kxad012","DOIUrl":null,"url":null,"abstract":"<p><p>Existing methods for fitting continuous time Markov models (CTMM) in the presence of covariates suffer from scalability issues due to high computational cost of matrix exponentials calculated for each observation. In this article, we propose an optimization technique for CTMM which uses a stochastic gradient descent algorithm combined with differentiation of the matrix exponential using a Padé approximation. This approach makes fitting large scale data feasible. We present two methods for computing standard errors, one novel approach using the Padé expansion and the other using power series expansion of the matrix exponential. Through simulations, we find improved performance relative to existing CTMM methods, and we demonstrate the method on the large-scale multiple sclerosis NO.MS data set.</p>","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":" ","pages":"681-701"},"PeriodicalIF":1.8000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11247187/pdf/","citationCount":"0","resultStr":"{\"title\":\"A scalable approach for continuous time Markov models with covariates.\",\"authors\":\"Farhad Hatami, Alex Ocampo, Gordon Graham, Thomas E Nichols, Habib Ganjgahi\",\"doi\":\"10.1093/biostatistics/kxad012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Existing methods for fitting continuous time Markov models (CTMM) in the presence of covariates suffer from scalability issues due to high computational cost of matrix exponentials calculated for each observation. In this article, we propose an optimization technique for CTMM which uses a stochastic gradient descent algorithm combined with differentiation of the matrix exponential using a Padé approximation. This approach makes fitting large scale data feasible. We present two methods for computing standard errors, one novel approach using the Padé expansion and the other using power series expansion of the matrix exponential. Through simulations, we find improved performance relative to existing CTMM methods, and we demonstrate the method on the large-scale multiple sclerosis NO.MS data set.</p>\",\"PeriodicalId\":55357,\"journal\":{\"name\":\"Biostatistics\",\"volume\":\" \",\"pages\":\"681-701\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11247187/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biostatistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/biostatistics/kxad012\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biostatistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biostatistics/kxad012","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
A scalable approach for continuous time Markov models with covariates.
Existing methods for fitting continuous time Markov models (CTMM) in the presence of covariates suffer from scalability issues due to high computational cost of matrix exponentials calculated for each observation. In this article, we propose an optimization technique for CTMM which uses a stochastic gradient descent algorithm combined with differentiation of the matrix exponential using a Padé approximation. This approach makes fitting large scale data feasible. We present two methods for computing standard errors, one novel approach using the Padé expansion and the other using power series expansion of the matrix exponential. Through simulations, we find improved performance relative to existing CTMM methods, and we demonstrate the method on the large-scale multiple sclerosis NO.MS data set.
期刊介绍:
Among the important scientific developments of the 20th century is the explosive growth in statistical reasoning and methods for application to studies of human health. Examples include developments in likelihood methods for inference, epidemiologic statistics, clinical trials, survival analysis, and statistical genetics. Substantive problems in public health and biomedical research have fueled the development of statistical methods, which in turn have improved our ability to draw valid inferences from data. The objective of Biostatistics is to advance statistical science and its application to problems of human health and disease, with the ultimate goal of advancing the public''s health.