{"title":"适体(PmA2G02)对奇异变形杆菌1429T的生长抑制和抗生物膜活性的评估。","authors":"Rajalakshmi Elumalai , Archana Vishwakarma , Anandkumar Balakrishnan , Mohandass Ramya","doi":"10.1016/j.resmic.2023.104105","DOIUrl":null,"url":null,"abstract":"<div><p><span><em>Proteus </em><em>mirabilis</em></span><span> is known to cause Catheter-associated urinary tract infections (CAUTIs), which exhibit virulence factors linked to forming biofilms. Aptamers have recently been explored as potential anti-biofilm agents. This study demonstrates the anti-biofilm activity of aptamer (PmA2G02) targeting </span><em>P. mirabilis</em> 1429<sup>T</sup><span><span>, a pathogenic bacteria known to cause Catheter-associated urinary tract infections (CAUTIs). The studied aptamer inhibited biofilm formation, swarming motility<span>, and cell viability<span> at a concentration of 3 μM. The study also showed that the PmA2G02 had a binding affinity towards fimbrial </span></span></span>outer membrane usher protein (</span><em>PMI1466</em><span>), flagellin protein (</span><em>PMI1619</em>), and regulator of swarming behavior (<em>rsbA</em><span>), which are responsible for adhesion, motility, and quorum sensing, respectively. Crystal violet assay, SEM, and confocal imaging confirmed the effectiveness of the PmA2G02 as an anti-biofilm agent. Moreover, as verified by qPCR, the expression levels of </span><em>fimD</em>, <em>fliC2</em>, and <em>rsbA</em> were significantly reduced compared to the untreated group. This study suggests that aptamer may be a potential alternative to traditional antibiotics for the treatment of CAUTIs caused by <em>P. mirabilis</em>. These findings shed light on the mechanisms by which the aptamer inhibits biofilm formation.</p></div>","PeriodicalId":21098,"journal":{"name":"Research in microbiology","volume":"175 3","pages":"Article 104105"},"PeriodicalIF":2.5000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessment of the growth inhibition and anti-biofilm activity of aptamer (PmA2G02) against Proteus mirabilis 1429T\",\"authors\":\"Rajalakshmi Elumalai , Archana Vishwakarma , Anandkumar Balakrishnan , Mohandass Ramya\",\"doi\":\"10.1016/j.resmic.2023.104105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><em>Proteus </em><em>mirabilis</em></span><span> is known to cause Catheter-associated urinary tract infections (CAUTIs), which exhibit virulence factors linked to forming biofilms. Aptamers have recently been explored as potential anti-biofilm agents. This study demonstrates the anti-biofilm activity of aptamer (PmA2G02) targeting </span><em>P. mirabilis</em> 1429<sup>T</sup><span><span>, a pathogenic bacteria known to cause Catheter-associated urinary tract infections (CAUTIs). The studied aptamer inhibited biofilm formation, swarming motility<span>, and cell viability<span> at a concentration of 3 μM. The study also showed that the PmA2G02 had a binding affinity towards fimbrial </span></span></span>outer membrane usher protein (</span><em>PMI1466</em><span>), flagellin protein (</span><em>PMI1619</em>), and regulator of swarming behavior (<em>rsbA</em><span>), which are responsible for adhesion, motility, and quorum sensing, respectively. Crystal violet assay, SEM, and confocal imaging confirmed the effectiveness of the PmA2G02 as an anti-biofilm agent. Moreover, as verified by qPCR, the expression levels of </span><em>fimD</em>, <em>fliC2</em>, and <em>rsbA</em> were significantly reduced compared to the untreated group. This study suggests that aptamer may be a potential alternative to traditional antibiotics for the treatment of CAUTIs caused by <em>P. mirabilis</em>. These findings shed light on the mechanisms by which the aptamer inhibits biofilm formation.</p></div>\",\"PeriodicalId\":21098,\"journal\":{\"name\":\"Research in microbiology\",\"volume\":\"175 3\",\"pages\":\"Article 104105\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research in microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0923250823000803\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in microbiology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0923250823000803","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Assessment of the growth inhibition and anti-biofilm activity of aptamer (PmA2G02) against Proteus mirabilis 1429T
Proteus mirabilis is known to cause Catheter-associated urinary tract infections (CAUTIs), which exhibit virulence factors linked to forming biofilms. Aptamers have recently been explored as potential anti-biofilm agents. This study demonstrates the anti-biofilm activity of aptamer (PmA2G02) targeting P. mirabilis 1429T, a pathogenic bacteria known to cause Catheter-associated urinary tract infections (CAUTIs). The studied aptamer inhibited biofilm formation, swarming motility, and cell viability at a concentration of 3 μM. The study also showed that the PmA2G02 had a binding affinity towards fimbrial outer membrane usher protein (PMI1466), flagellin protein (PMI1619), and regulator of swarming behavior (rsbA), which are responsible for adhesion, motility, and quorum sensing, respectively. Crystal violet assay, SEM, and confocal imaging confirmed the effectiveness of the PmA2G02 as an anti-biofilm agent. Moreover, as verified by qPCR, the expression levels of fimD, fliC2, and rsbA were significantly reduced compared to the untreated group. This study suggests that aptamer may be a potential alternative to traditional antibiotics for the treatment of CAUTIs caused by P. mirabilis. These findings shed light on the mechanisms by which the aptamer inhibits biofilm formation.
期刊介绍:
Research in Microbiology is the direct descendant of the original Pasteur periodical entitled Annales de l''Institut Pasteur, created in 1887 by Emile Duclaux under the patronage of Louis Pasteur. The Editorial Committee included Chamberland, Grancher, Nocard, Roux and Straus, and the first issue began with Louis Pasteur''s "Lettre sur la Rage" which clearly defines the spirit of the journal:"You have informed me, my dear Duclaux, that you intend to start a monthly collection of articles entitled "Annales de l''Institut Pasteur". You will be rendering a service that will be appreciated by the ever increasing number of young scientists who are attracted to microbiological studies. In your Annales, our laboratory research will of course occupy a central position, but the work from outside groups that you intend to publish will be a source of competitive stimulation for all of us."That first volume included 53 articles as well as critical reviews and book reviews. From that time on, the Annales appeared regularly every month, without interruption, even during the two world wars. Although the journal has undergone many changes over the past 100 years (in the title, the format, the language) reflecting the evolution in scientific publishing, it has consistently maintained the Pasteur tradition by publishing original reports on all aspects of microbiology.