Antonella Marrocco, Dilpreet Singh, David C Christiani, Philip Demokritou
{"title":"电子烟相关急性肺损伤(EVALI):科学现状和未来研究需求。","authors":"Antonella Marrocco, Dilpreet Singh, David C Christiani, Philip Demokritou","doi":"10.1080/10408444.2022.2082918","DOIUrl":null,"url":null,"abstract":"<p><p>\"E-Cigarette (e-cig) Vaping-Associated Acute Lung Injury\" (EVALI) has been linked to vitamin-E-acetate (VEA) and Δ-9-tetrahydrocannabinol (THC), due to their presence in patients' e-cigs and biological samples. Lacking standardized methodologies for patients' data collection and comprehensive physicochemical/toxicological studies using real-world-vapor exposures, very little data are available, thus the underlying pathophysiological mechanism of EVALI is still unknown. This review aims to provide a comprehensive and critical appraisal of existing literature on clinical/epidemiological features and physicochemical-toxicological characterization of vaping emissions associated with EVALI. The literature review of 161 medical case reports revealed that the predominant demographic pattern was healthy white male, adolescent, or young adult, vaping illicit/informal THC-containing e-cigs. The main histopathologic pattern consisted of diffuse alveolar damage with bilateral ground-glass-opacities at chest radiograph/CT, and increased number of macrophages or neutrophils and foamy-macrophages in the bronchoalveolar lavage. The chemical analysis of THC/VEA e-cig vapors showed a chemical difference between THC/VEA and the single THC or VEA. The chemical characterization of vapors from counterfeit THC-based e-cigs or in-house-prepared e-liquids using either cannabidiol (CBD), VEA, or medium-chain triglycerides (MCT), identified many toxicants, such as carbonyls, volatile organic compounds, terpenes, silicon compounds, hydrocarbons, heavy metals, pesticides and various industrial/manufacturing/automotive-related chemicals. There is very scarce published toxicological data on emissions from THC/VEA e-liquids. However, CBD, MCT, and VEA emissions exert varying degrees of cytotoxicity, inflammation, and lung damage, depending on puffing topography and cell line. Major knowledge gaps were identified, including the need for more systematic-standardized epidemiological surveys, comprehensive physicochemical characterization of real-world e-cig emissions, and mechanistic studies linking emission properties to specific toxicological outcomes.</p>","PeriodicalId":10869,"journal":{"name":"Critical Reviews in Toxicology","volume":"52 3","pages":"188-220"},"PeriodicalIF":5.7000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9716650/pdf/nihms-1848342.pdf","citationCount":"0","resultStr":"{\"title\":\"E-cigarette vaping associated acute lung injury (EVALI): state of science and future research needs.\",\"authors\":\"Antonella Marrocco, Dilpreet Singh, David C Christiani, Philip Demokritou\",\"doi\":\"10.1080/10408444.2022.2082918\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>\\\"E-Cigarette (e-cig) Vaping-Associated Acute Lung Injury\\\" (EVALI) has been linked to vitamin-E-acetate (VEA) and Δ-9-tetrahydrocannabinol (THC), due to their presence in patients' e-cigs and biological samples. Lacking standardized methodologies for patients' data collection and comprehensive physicochemical/toxicological studies using real-world-vapor exposures, very little data are available, thus the underlying pathophysiological mechanism of EVALI is still unknown. This review aims to provide a comprehensive and critical appraisal of existing literature on clinical/epidemiological features and physicochemical-toxicological characterization of vaping emissions associated with EVALI. The literature review of 161 medical case reports revealed that the predominant demographic pattern was healthy white male, adolescent, or young adult, vaping illicit/informal THC-containing e-cigs. The main histopathologic pattern consisted of diffuse alveolar damage with bilateral ground-glass-opacities at chest radiograph/CT, and increased number of macrophages or neutrophils and foamy-macrophages in the bronchoalveolar lavage. The chemical analysis of THC/VEA e-cig vapors showed a chemical difference between THC/VEA and the single THC or VEA. The chemical characterization of vapors from counterfeit THC-based e-cigs or in-house-prepared e-liquids using either cannabidiol (CBD), VEA, or medium-chain triglycerides (MCT), identified many toxicants, such as carbonyls, volatile organic compounds, terpenes, silicon compounds, hydrocarbons, heavy metals, pesticides and various industrial/manufacturing/automotive-related chemicals. There is very scarce published toxicological data on emissions from THC/VEA e-liquids. However, CBD, MCT, and VEA emissions exert varying degrees of cytotoxicity, inflammation, and lung damage, depending on puffing topography and cell line. Major knowledge gaps were identified, including the need for more systematic-standardized epidemiological surveys, comprehensive physicochemical characterization of real-world e-cig emissions, and mechanistic studies linking emission properties to specific toxicological outcomes.</p>\",\"PeriodicalId\":10869,\"journal\":{\"name\":\"Critical Reviews in Toxicology\",\"volume\":\"52 3\",\"pages\":\"188-220\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9716650/pdf/nihms-1848342.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Critical Reviews in Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/10408444.2022.2082918\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/7/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Reviews in Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10408444.2022.2082918","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/7/13 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"TOXICOLOGY","Score":null,"Total":0}
E-cigarette vaping associated acute lung injury (EVALI): state of science and future research needs.
"E-Cigarette (e-cig) Vaping-Associated Acute Lung Injury" (EVALI) has been linked to vitamin-E-acetate (VEA) and Δ-9-tetrahydrocannabinol (THC), due to their presence in patients' e-cigs and biological samples. Lacking standardized methodologies for patients' data collection and comprehensive physicochemical/toxicological studies using real-world-vapor exposures, very little data are available, thus the underlying pathophysiological mechanism of EVALI is still unknown. This review aims to provide a comprehensive and critical appraisal of existing literature on clinical/epidemiological features and physicochemical-toxicological characterization of vaping emissions associated with EVALI. The literature review of 161 medical case reports revealed that the predominant demographic pattern was healthy white male, adolescent, or young adult, vaping illicit/informal THC-containing e-cigs. The main histopathologic pattern consisted of diffuse alveolar damage with bilateral ground-glass-opacities at chest radiograph/CT, and increased number of macrophages or neutrophils and foamy-macrophages in the bronchoalveolar lavage. The chemical analysis of THC/VEA e-cig vapors showed a chemical difference between THC/VEA and the single THC or VEA. The chemical characterization of vapors from counterfeit THC-based e-cigs or in-house-prepared e-liquids using either cannabidiol (CBD), VEA, or medium-chain triglycerides (MCT), identified many toxicants, such as carbonyls, volatile organic compounds, terpenes, silicon compounds, hydrocarbons, heavy metals, pesticides and various industrial/manufacturing/automotive-related chemicals. There is very scarce published toxicological data on emissions from THC/VEA e-liquids. However, CBD, MCT, and VEA emissions exert varying degrees of cytotoxicity, inflammation, and lung damage, depending on puffing topography and cell line. Major knowledge gaps were identified, including the need for more systematic-standardized epidemiological surveys, comprehensive physicochemical characterization of real-world e-cig emissions, and mechanistic studies linking emission properties to specific toxicological outcomes.
期刊介绍:
Critical Reviews in Toxicology provides up-to-date, objective analyses of topics related to the mechanisms of action, responses, and assessment of health risks due to toxicant exposure. The journal publishes critical, comprehensive reviews of research findings in toxicology and the application of toxicological information in assessing human health hazards and risks. Toxicants of concern include commodity and specialty chemicals such as formaldehyde, acrylonitrile, and pesticides; pharmaceutical agents of all types; consumer products such as macronutrients and food additives; environmental agents such as ambient ozone; and occupational exposures such as asbestos and benzene.