结晶直径为 6 纳米的二氧化钛纳米颗粒的大鼠口服毒理学研究。

IF 7.2 1区 医学 Q1 TOXICOLOGY
Jun-Ichi Akagi, Yasuko Mizuta, Hirotoshi Akane, Takeshi Toyoda, Kumiko Ogawa
{"title":"结晶直径为 6 纳米的二氧化钛纳米颗粒的大鼠口服毒理学研究。","authors":"Jun-Ichi Akagi, Yasuko Mizuta, Hirotoshi Akane, Takeshi Toyoda, Kumiko Ogawa","doi":"10.1186/s12989-023-00533-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Though titanium dioxide (TiO<sub>2</sub>) is generally considered to have a low impact in the human body, the safety of TiO<sub>2</sub> containing nanosized particles (NPs) has attracted attention. We found that the toxicity of silver NPs markedly varied depending on their particle size, as silver NPs with a diameter of 10 nm exhibited fatal toxicity in female BALB/c mice, unlike those with diameters of 60 and 100 nm. Therefore, the toxicological effects of the smallest available TiO<sub>2</sub> NPs with a crystallite size of 6 nm were examined in male and female F344/DuCrlCrlj rats by repeated oral administration of 10, 100, and 1000 mg/kg bw/day (5/sex/group) for 28 days and of 100, 300, and 1000 mg/kg bw/day (10/sex/group) for 90 days.</p><p><strong>Results: </strong>In both 28- and 90-day studies, no mortality was observed in any group, and no treatment-related adverse effects were observed in body weight, urinalysis, hematology, serum biochemistry, or organ weight. Histopathological examination revealed TiO<sub>2</sub> particles as depositions of yellowish-brown material. The particles observed in the gastrointestinal lumen were also found in the nasal cavity, epithelium, and stromal tissue in the 28-day study. In addition, they were observed in Peyer's patches in the ileum, cervical lymph nodes, mediastinal lymph nodes, bronchus-associated lymphoid tissue, and trachea in the 90-day study. Notably, no adverse biological responses, such as inflammation or tissue injury, were observed around the deposits. Titanium concentration analysis in the liver, kidneys, and spleen revealed that TiO<sub>2</sub> NPs were barely absorbed and accumulated in these tissues. Immunohistochemical analysis of colonic crypts showed no extension of the proliferative cell zone or preneoplastic cytoplasmic/nuclear translocation of β-catenin either in the male or female 1000 mg/kg bw/day group. Regarding genotoxicity, no significant increase in micronucleated or γ-H2AX positive hepatocytes was observed. Additionally, the induction of γ-H2AX was not observed at the deposition sites of yellowish-brown materials.</p><p><strong>Conclusions: </strong>No effects were observed after repeated oral administration of TiO<sub>2</sub> with a crystallite size of 6 nm at up to 1000 mg/kg bw/day regarding general toxicity, accumulation of titanium in the liver, kidneys, and spleen, abnormality of colonic crypts, and induction of DNA strand breaks and chromosomal aberrations.</p>","PeriodicalId":19847,"journal":{"name":"Particle and Fibre Toxicology","volume":null,"pages":null},"PeriodicalIF":7.2000,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10280982/pdf/","citationCount":"0","resultStr":"{\"title\":\"Oral toxicological study of titanium dioxide nanoparticles with a crystallite diameter of 6 nm in rats.\",\"authors\":\"Jun-Ichi Akagi, Yasuko Mizuta, Hirotoshi Akane, Takeshi Toyoda, Kumiko Ogawa\",\"doi\":\"10.1186/s12989-023-00533-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Though titanium dioxide (TiO<sub>2</sub>) is generally considered to have a low impact in the human body, the safety of TiO<sub>2</sub> containing nanosized particles (NPs) has attracted attention. We found that the toxicity of silver NPs markedly varied depending on their particle size, as silver NPs with a diameter of 10 nm exhibited fatal toxicity in female BALB/c mice, unlike those with diameters of 60 and 100 nm. Therefore, the toxicological effects of the smallest available TiO<sub>2</sub> NPs with a crystallite size of 6 nm were examined in male and female F344/DuCrlCrlj rats by repeated oral administration of 10, 100, and 1000 mg/kg bw/day (5/sex/group) for 28 days and of 100, 300, and 1000 mg/kg bw/day (10/sex/group) for 90 days.</p><p><strong>Results: </strong>In both 28- and 90-day studies, no mortality was observed in any group, and no treatment-related adverse effects were observed in body weight, urinalysis, hematology, serum biochemistry, or organ weight. Histopathological examination revealed TiO<sub>2</sub> particles as depositions of yellowish-brown material. The particles observed in the gastrointestinal lumen were also found in the nasal cavity, epithelium, and stromal tissue in the 28-day study. In addition, they were observed in Peyer's patches in the ileum, cervical lymph nodes, mediastinal lymph nodes, bronchus-associated lymphoid tissue, and trachea in the 90-day study. Notably, no adverse biological responses, such as inflammation or tissue injury, were observed around the deposits. Titanium concentration analysis in the liver, kidneys, and spleen revealed that TiO<sub>2</sub> NPs were barely absorbed and accumulated in these tissues. Immunohistochemical analysis of colonic crypts showed no extension of the proliferative cell zone or preneoplastic cytoplasmic/nuclear translocation of β-catenin either in the male or female 1000 mg/kg bw/day group. Regarding genotoxicity, no significant increase in micronucleated or γ-H2AX positive hepatocytes was observed. Additionally, the induction of γ-H2AX was not observed at the deposition sites of yellowish-brown materials.</p><p><strong>Conclusions: </strong>No effects were observed after repeated oral administration of TiO<sub>2</sub> with a crystallite size of 6 nm at up to 1000 mg/kg bw/day regarding general toxicity, accumulation of titanium in the liver, kidneys, and spleen, abnormality of colonic crypts, and induction of DNA strand breaks and chromosomal aberrations.</p>\",\"PeriodicalId\":19847,\"journal\":{\"name\":\"Particle and Fibre Toxicology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2023-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10280982/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Particle and Fibre Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12989-023-00533-x\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Particle and Fibre Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12989-023-00533-x","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:尽管人们普遍认为二氧化钛(TiO2)对人体的影响较小,但含有纳米颗粒(NPs)的二氧化钛的安全性却引起了人们的关注。我们发现,银纳米粒子的毒性因其粒径大小而明显不同,直径为 10 纳米的银纳米粒子对雌性 BALB/c 小鼠具有致命毒性,而直径为 60 纳米和 100 纳米的银纳米粒子则不同。因此,通过重复口服10、100和1000毫克/千克体重/天(5只/性别/组),连续28天,以及100、300和1000毫克/千克体重/天(10只/性别/组),连续90天,在雄性和雌性F344/DuCrlCrlj大鼠体内检测了结晶尺寸为6纳米的最小TiO2 NPs的毒理学效应:在 28 天和 90 天的研究中,各组均未观察到死亡现象,在体重、尿液分析、血液学、血清生化和器官重量方面也未观察到与治疗有关的不良反应。组织病理学检查显示,二氧化钛颗粒为黄褐色沉积物。在为期 28 天的研究中,在胃肠腔中观察到的颗粒也出现在鼻腔、上皮和基质组织中。此外,在 90 天的研究中,在回肠的佩耶氏斑块、颈淋巴结、纵隔淋巴结、支气管相关淋巴组织和气管中也观察到了这些微粒。值得注意的是,在沉积物周围没有观察到不良生物反应,如炎症或组织损伤。肝脏、肾脏和脾脏中的钛浓度分析表明,TiO2 NPs 在这些组织中几乎没有被吸收和积累。对结肠隐窝的免疫组化分析表明,无论是男性组还是女性 1000 毫克/千克体重/天组,增殖细胞区都没有扩大,β-catenin 的细胞质/核易位也没有发生。在遗传毒性方面,未观察到微核或 γ-H2AX 阳性肝细胞显著增加。此外,在黄褐色物质的沉积部位也未观察到诱导γ-H2AX的现象:结论:反复口服晶体大小为 6 纳米的二氧化钛,剂量最高为 1000 毫克/千克体重/天,对一般毒性、钛在肝脏、肾脏和脾脏的蓄积、结肠隐窝异常以及 DNA 断裂和染色体畸变的诱导均无影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Oral toxicological study of titanium dioxide nanoparticles with a crystallite diameter of 6 nm in rats.

Oral toxicological study of titanium dioxide nanoparticles with a crystallite diameter of 6 nm in rats.

Oral toxicological study of titanium dioxide nanoparticles with a crystallite diameter of 6 nm in rats.

Oral toxicological study of titanium dioxide nanoparticles with a crystallite diameter of 6 nm in rats.

Background: Though titanium dioxide (TiO2) is generally considered to have a low impact in the human body, the safety of TiO2 containing nanosized particles (NPs) has attracted attention. We found that the toxicity of silver NPs markedly varied depending on their particle size, as silver NPs with a diameter of 10 nm exhibited fatal toxicity in female BALB/c mice, unlike those with diameters of 60 and 100 nm. Therefore, the toxicological effects of the smallest available TiO2 NPs with a crystallite size of 6 nm were examined in male and female F344/DuCrlCrlj rats by repeated oral administration of 10, 100, and 1000 mg/kg bw/day (5/sex/group) for 28 days and of 100, 300, and 1000 mg/kg bw/day (10/sex/group) for 90 days.

Results: In both 28- and 90-day studies, no mortality was observed in any group, and no treatment-related adverse effects were observed in body weight, urinalysis, hematology, serum biochemistry, or organ weight. Histopathological examination revealed TiO2 particles as depositions of yellowish-brown material. The particles observed in the gastrointestinal lumen were also found in the nasal cavity, epithelium, and stromal tissue in the 28-day study. In addition, they were observed in Peyer's patches in the ileum, cervical lymph nodes, mediastinal lymph nodes, bronchus-associated lymphoid tissue, and trachea in the 90-day study. Notably, no adverse biological responses, such as inflammation or tissue injury, were observed around the deposits. Titanium concentration analysis in the liver, kidneys, and spleen revealed that TiO2 NPs were barely absorbed and accumulated in these tissues. Immunohistochemical analysis of colonic crypts showed no extension of the proliferative cell zone or preneoplastic cytoplasmic/nuclear translocation of β-catenin either in the male or female 1000 mg/kg bw/day group. Regarding genotoxicity, no significant increase in micronucleated or γ-H2AX positive hepatocytes was observed. Additionally, the induction of γ-H2AX was not observed at the deposition sites of yellowish-brown materials.

Conclusions: No effects were observed after repeated oral administration of TiO2 with a crystallite size of 6 nm at up to 1000 mg/kg bw/day regarding general toxicity, accumulation of titanium in the liver, kidneys, and spleen, abnormality of colonic crypts, and induction of DNA strand breaks and chromosomal aberrations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
15.90
自引率
4.00%
发文量
69
审稿时长
6 months
期刊介绍: Particle and Fibre Toxicology is an online journal that is open access and peer-reviewed. It covers a range of disciplines such as material science, biomaterials, and nanomedicine, focusing on the toxicological effects of particles and fibres. The journal serves as a platform for scientific debate and communication among toxicologists and scientists from different fields who work with particle and fibre materials. The main objective of the journal is to deepen our understanding of the physico-chemical properties of particles, their potential for human exposure, and the resulting biological effects. It also addresses regulatory issues related to particle exposure in workplaces and the general environment. Moreover, the journal recognizes that there are various situations where particles can pose a toxicological threat, such as the use of old materials in new applications or the introduction of new materials altogether. By encompassing all these disciplines, Particle and Fibre Toxicology provides a comprehensive source for research in this field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信