利用遗传资源和精确基因编辑技术有针对性地改良大麦对非生物胁迫的耐受性。

Sakura Karunarathne, Esther Walker, Darshan Sharma, Chengdao Li, Yong Han
{"title":"利用遗传资源和精确基因编辑技术有针对性地改良大麦对非生物胁迫的耐受性。","authors":"Sakura Karunarathne, Esther Walker, Darshan Sharma, Chengdao Li, Yong Han","doi":"10.1631/jzus.B2200552","DOIUrl":null,"url":null,"abstract":"<p><p>Abiotic stresses, predominately drought, heat, salinity, cold, and waterlogging, adversely affect cereal crops. They limit barley production worldwide and cause huge economic losses. In barley, functional genes under various stresses have been identified over the years and genetic improvement to stress tolerance has taken a new turn with the introduction of modern gene-editing platforms. In particular, clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) is a robust and versatile tool for precise mutation creation and trait improvement. In this review, we highlight the stress-affected regions and the corresponding economic losses among the main barley producers. We collate about 150 key genes associated with stress tolerance and combine them into a single physical map for potential breeding practices. We also overview the applications of precise base editing, prime editing, and multiplexing technologies for targeted trait modification, and discuss current challenges including high-throughput mutant genotyping and genotype dependency in genetic transformation to promote commercial breeding. The listed genes counteract key stresses such as drought, salinity, and nutrient deficiency, and the potential application of the respective gene-editing technologies will provide insight into barley improvement for climate resilience.</p>","PeriodicalId":17601,"journal":{"name":"Journal of Zhejiang University. Science. B","volume":" ","pages":"1-24"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Genetic resources and precise gene editing for targeted improvement of barley abiotic stress tolerance.\",\"authors\":\"Sakura Karunarathne, Esther Walker, Darshan Sharma, Chengdao Li, Yong Han\",\"doi\":\"10.1631/jzus.B2200552\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Abiotic stresses, predominately drought, heat, salinity, cold, and waterlogging, adversely affect cereal crops. They limit barley production worldwide and cause huge economic losses. In barley, functional genes under various stresses have been identified over the years and genetic improvement to stress tolerance has taken a new turn with the introduction of modern gene-editing platforms. In particular, clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) is a robust and versatile tool for precise mutation creation and trait improvement. In this review, we highlight the stress-affected regions and the corresponding economic losses among the main barley producers. We collate about 150 key genes associated with stress tolerance and combine them into a single physical map for potential breeding practices. We also overview the applications of precise base editing, prime editing, and multiplexing technologies for targeted trait modification, and discuss current challenges including high-throughput mutant genotyping and genotype dependency in genetic transformation to promote commercial breeding. The listed genes counteract key stresses such as drought, salinity, and nutrient deficiency, and the potential application of the respective gene-editing technologies will provide insight into barley improvement for climate resilience.</p>\",\"PeriodicalId\":17601,\"journal\":{\"name\":\"Journal of Zhejiang University. Science. B\",\"volume\":\" \",\"pages\":\"1-24\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Zhejiang University. Science. B\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1631/jzus.B2200552\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Zhejiang University. Science. B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1631/jzus.B2200552","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

非生物胁迫,主要是干旱、高温、盐碱、寒冷和涝害,对谷类作物造成不利影响。它们限制了全世界大麦的产量,造成了巨大的经济损失。随着现代基因编辑平台的引入,大麦抗逆性的遗传改良出现了新的转机。其中,簇状规则间距短回文重复序列(CRISPR)/CRISPR相关蛋白9(Cas9)是一种用于精确突变和性状改良的强大而多用途的工具。在这篇综述中,我们重点介绍了受胁迫影响的地区以及大麦主要生产国的相应经济损失。我们整理了约 150 个与抗逆性相关的关键基因,并将它们整合到一张物理图谱中,用于潜在的育种实践。我们还概述了精确碱基编辑、质粒编辑和多路复用技术在定向性状修饰中的应用,并讨论了当前的挑战,包括高通量突变体基因分型和基因转化中的基因型依赖性,以促进商业育种。列出的基因可抵御干旱、盐碱和营养缺乏等关键胁迫,相应基因编辑技术的潜在应用将为大麦的气候适应性改良提供启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Genetic resources and precise gene editing for targeted improvement of barley abiotic stress tolerance.

Abiotic stresses, predominately drought, heat, salinity, cold, and waterlogging, adversely affect cereal crops. They limit barley production worldwide and cause huge economic losses. In barley, functional genes under various stresses have been identified over the years and genetic improvement to stress tolerance has taken a new turn with the introduction of modern gene-editing platforms. In particular, clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) is a robust and versatile tool for precise mutation creation and trait improvement. In this review, we highlight the stress-affected regions and the corresponding economic losses among the main barley producers. We collate about 150 key genes associated with stress tolerance and combine them into a single physical map for potential breeding practices. We also overview the applications of precise base editing, prime editing, and multiplexing technologies for targeted trait modification, and discuss current challenges including high-throughput mutant genotyping and genotype dependency in genetic transformation to promote commercial breeding. The listed genes counteract key stresses such as drought, salinity, and nutrient deficiency, and the potential application of the respective gene-editing technologies will provide insight into barley improvement for climate resilience.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信