AI-AIF:基于人工智能的动脉输入函数,用于定量应激灌注心脏磁共振。

IF 3.9 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS
European heart journal. Digital health Pub Date : 2022-12-07 eCollection Date: 2023-01-01 DOI:10.1093/ehjdh/ztac074
Cian M Scannell, Ebraham Alskaf, Noor Sharrack, Reza Razavi, Sebastien Ourselin, Alistair A Young, Sven Plein, Amedeo Chiribiri
{"title":"AI-AIF:基于人工智能的动脉输入函数,用于定量应激灌注心脏磁共振。","authors":"Cian M Scannell, Ebraham Alskaf, Noor Sharrack, Reza Razavi, Sebastien Ourselin, Alistair A Young, Sven Plein, Amedeo Chiribiri","doi":"10.1093/ehjdh/ztac074","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>One of the major challenges in the quantification of myocardial blood flow (MBF) from stress perfusion cardiac magnetic resonance (CMR) is the estimation of the arterial input function (AIF). This is due to the non-linear relationship between the concentration of gadolinium and the MR signal, which leads to signal saturation. In this work, we show that a deep learning model can be trained to predict the unsaturated AIF from standard images, using the reference dual-sequence acquisition AIFs (DS-AIFs) for training.</p><p><strong>Methods and results: </strong>A 1D U-Net was trained, to take the saturated AIF from the standard images as input and predict the unsaturated AIF, using the data from 201 patients from centre 1 and a test set comprised of both an independent cohort of consecutive patients from centre 1 and an external cohort of patients from centre 2 (<i>n</i> = 44). Fully-automated MBF was compared between the DS-AIF and AI-AIF methods using the Mann-Whitney U test and Bland-Altman analysis. There was no statistical difference between the MBF quantified with the DS-AIF [2.77 mL/min/g (1.08)] and predicted with the AI-AIF (2.79 mL/min/g (1.08), <i>P</i> = 0.33. Bland-Altman analysis shows minimal bias between the DS-AIF and AI-AIF methods for quantitative MBF (bias of -0.11 mL/min/g). Additionally, the MBF diagnosis classification of the AI-AIF matched the DS-AIF in 669/704 (95%) of myocardial segments.</p><p><strong>Conclusion: </strong>Quantification of stress perfusion CMR is feasible with a single-sequence acquisition and a single contrast injection using an AI-based correction of the AIF.</p>","PeriodicalId":72965,"journal":{"name":"European heart journal. Digital health","volume":"4 1","pages":"12-21"},"PeriodicalIF":3.9000,"publicationDate":"2022-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9890084/pdf/","citationCount":"0","resultStr":"{\"title\":\"AI-AIF: artificial intelligence-based arterial input function for quantitative stress perfusion cardiac magnetic resonance.\",\"authors\":\"Cian M Scannell, Ebraham Alskaf, Noor Sharrack, Reza Razavi, Sebastien Ourselin, Alistair A Young, Sven Plein, Amedeo Chiribiri\",\"doi\":\"10.1093/ehjdh/ztac074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Aims: </strong>One of the major challenges in the quantification of myocardial blood flow (MBF) from stress perfusion cardiac magnetic resonance (CMR) is the estimation of the arterial input function (AIF). This is due to the non-linear relationship between the concentration of gadolinium and the MR signal, which leads to signal saturation. In this work, we show that a deep learning model can be trained to predict the unsaturated AIF from standard images, using the reference dual-sequence acquisition AIFs (DS-AIFs) for training.</p><p><strong>Methods and results: </strong>A 1D U-Net was trained, to take the saturated AIF from the standard images as input and predict the unsaturated AIF, using the data from 201 patients from centre 1 and a test set comprised of both an independent cohort of consecutive patients from centre 1 and an external cohort of patients from centre 2 (<i>n</i> = 44). Fully-automated MBF was compared between the DS-AIF and AI-AIF methods using the Mann-Whitney U test and Bland-Altman analysis. There was no statistical difference between the MBF quantified with the DS-AIF [2.77 mL/min/g (1.08)] and predicted with the AI-AIF (2.79 mL/min/g (1.08), <i>P</i> = 0.33. Bland-Altman analysis shows minimal bias between the DS-AIF and AI-AIF methods for quantitative MBF (bias of -0.11 mL/min/g). Additionally, the MBF diagnosis classification of the AI-AIF matched the DS-AIF in 669/704 (95%) of myocardial segments.</p><p><strong>Conclusion: </strong>Quantification of stress perfusion CMR is feasible with a single-sequence acquisition and a single contrast injection using an AI-based correction of the AIF.</p>\",\"PeriodicalId\":72965,\"journal\":{\"name\":\"European heart journal. Digital health\",\"volume\":\"4 1\",\"pages\":\"12-21\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2022-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9890084/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European heart journal. Digital health\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/ehjdh/ztac074\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European heart journal. Digital health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ehjdh/ztac074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

目的:应力灌注心脏磁共振(CMR)量化心肌血流(MBF)的主要挑战之一是估计动脉输入功能(AIF)。这是由于钆的浓度与磁共振信号之间的非线性关系导致信号饱和。在这项工作中,我们利用参考的双序列采集 AIF(DS-AIF)进行训练,结果表明可以训练出一个深度学习模型来预测标准图像中的未饱和 AIF:使用来自中心 1 的 201 名患者的数据和由中心 1 的连续患者组成的独立队列和中心 2 的外部患者队列(n = 44)组成的测试集,训练了一个 1D U-Net,将标准图像中的饱和 AIF 作为输入并预测不饱和 AIF。使用 Mann-Whitney U 检验和 Bland-Altman 分析比较了 DS-AIF 和 AI-AIF 两种全自动 MBF 方法。DS-AIF 定量的 MBF [2.77 mL/min/g (1.08)]与 AI-AIF 预测的 MBF [2.79 mL/min/g (1.08),P = 0.33]之间没有统计学差异。Bland-Altman 分析显示,DS-AIF 和 AI-AIF 定量 MBF 方法之间的偏差极小(偏差为 -0.11 mL/min/g)。此外,在 669/704 (95%) 个心肌节段中,AI-AIF 的 MBF 诊断分类与 DS-AIF 相匹配:结论:使用基于 AI 的 AIF 校正,通过单序列采集和单次造影剂注射进行应激灌注 CMR 定量是可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

AI-AIF: artificial intelligence-based arterial input function for quantitative stress perfusion cardiac magnetic resonance.

AI-AIF: artificial intelligence-based arterial input function for quantitative stress perfusion cardiac magnetic resonance.

AI-AIF: artificial intelligence-based arterial input function for quantitative stress perfusion cardiac magnetic resonance.

AI-AIF: artificial intelligence-based arterial input function for quantitative stress perfusion cardiac magnetic resonance.

Aims: One of the major challenges in the quantification of myocardial blood flow (MBF) from stress perfusion cardiac magnetic resonance (CMR) is the estimation of the arterial input function (AIF). This is due to the non-linear relationship between the concentration of gadolinium and the MR signal, which leads to signal saturation. In this work, we show that a deep learning model can be trained to predict the unsaturated AIF from standard images, using the reference dual-sequence acquisition AIFs (DS-AIFs) for training.

Methods and results: A 1D U-Net was trained, to take the saturated AIF from the standard images as input and predict the unsaturated AIF, using the data from 201 patients from centre 1 and a test set comprised of both an independent cohort of consecutive patients from centre 1 and an external cohort of patients from centre 2 (n = 44). Fully-automated MBF was compared between the DS-AIF and AI-AIF methods using the Mann-Whitney U test and Bland-Altman analysis. There was no statistical difference between the MBF quantified with the DS-AIF [2.77 mL/min/g (1.08)] and predicted with the AI-AIF (2.79 mL/min/g (1.08), P = 0.33. Bland-Altman analysis shows minimal bias between the DS-AIF and AI-AIF methods for quantitative MBF (bias of -0.11 mL/min/g). Additionally, the MBF diagnosis classification of the AI-AIF matched the DS-AIF in 669/704 (95%) of myocardial segments.

Conclusion: Quantification of stress perfusion CMR is feasible with a single-sequence acquisition and a single contrast injection using an AI-based correction of the AIF.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信