昆虫级可按需配置多功能软磁机器人的协同机械设计与功能集成。

IF 6.4 2区 计算机科学 Q1 ROBOTICS
Soft Robotics Pub Date : 2024-02-01 Epub Date: 2023-07-07 DOI:10.1089/soro.2022.0105
Xingxing Ke, Haochen Yong, Fukang Xu, Zhiping Chai, Jiajun Jiang, Xiang Ni, Zhigang Wu
{"title":"昆虫级可按需配置多功能软磁机器人的协同机械设计与功能集成。","authors":"Xingxing Ke, Haochen Yong, Fukang Xu, Zhiping Chai, Jiajun Jiang, Xiang Ni, Zhigang Wu","doi":"10.1089/soro.2022.0105","DOIUrl":null,"url":null,"abstract":"<p><p>Meso- or micro-scale(or insect-scale) robots that are capable of realizing flexible locomotion and/or carrying on complex tasks in a remotely controllable manner hold great promise in diverse fields, such as biomedical applications, unknown environment exploration, <i>in situ</i> operation in confined spaces, and so on. However, the existing design and implementation approaches for such multifunctional, on-demand configurable insect-scale robots are often focusing on their actuation or locomotion, while matched design and implementation with synergistic actuation and function modules under large deformation targeting varying task/target demands are rarely investigated. In this study, through systematical investigations on synergistical mechanical design and function integration, we developed a matched design and implementation method for constructing multifunctional, on-demand configurable insect-scale soft magnetic robots. Based on such a method, we report a simple approach to construct soft magnetic robots by assembling various modules from the standard part library together. Moreover, diverse soft magnetic robots with desirable motion and function can be (re)configured. Finally, we demonstrated (re)configurable soft magnetic robots shifting into different modes to adapt and respond to varying scenarios. The customizable physical realization of complex soft robots with desirable actuation and diverse functions can pave a new way for constructing more sophisticated insect-scale soft machines that can be applied to practical applications soon.</p>","PeriodicalId":48685,"journal":{"name":"Soft Robotics","volume":" ","pages":"43-56"},"PeriodicalIF":6.4000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synergistical Mechanical Design and Function Integration for Insect-Scale On-Demand Configurable Multifunctional Soft Magnetic Robots.\",\"authors\":\"Xingxing Ke, Haochen Yong, Fukang Xu, Zhiping Chai, Jiajun Jiang, Xiang Ni, Zhigang Wu\",\"doi\":\"10.1089/soro.2022.0105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Meso- or micro-scale(or insect-scale) robots that are capable of realizing flexible locomotion and/or carrying on complex tasks in a remotely controllable manner hold great promise in diverse fields, such as biomedical applications, unknown environment exploration, <i>in situ</i> operation in confined spaces, and so on. However, the existing design and implementation approaches for such multifunctional, on-demand configurable insect-scale robots are often focusing on their actuation or locomotion, while matched design and implementation with synergistic actuation and function modules under large deformation targeting varying task/target demands are rarely investigated. In this study, through systematical investigations on synergistical mechanical design and function integration, we developed a matched design and implementation method for constructing multifunctional, on-demand configurable insect-scale soft magnetic robots. Based on such a method, we report a simple approach to construct soft magnetic robots by assembling various modules from the standard part library together. Moreover, diverse soft magnetic robots with desirable motion and function can be (re)configured. Finally, we demonstrated (re)configurable soft magnetic robots shifting into different modes to adapt and respond to varying scenarios. The customizable physical realization of complex soft robots with desirable actuation and diverse functions can pave a new way for constructing more sophisticated insect-scale soft machines that can be applied to practical applications soon.</p>\",\"PeriodicalId\":48685,\"journal\":{\"name\":\"Soft Robotics\",\"volume\":\" \",\"pages\":\"43-56\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soft Robotics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1089/soro.2022.0105\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/7/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft Robotics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1089/soro.2022.0105","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/7/7 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

摘要

中尺度或微尺度(或昆虫尺度)机器人能够实现灵活运动和/或以可远程控制的方式执行复杂任务,在生物医学应用、未知环境探索、密闭空间原位操作等多个领域大有可为。然而,现有的针对此类多功能、可按需配置的昆虫尺度机器人的设计和实现方法往往侧重于其驱动或运动,而针对不同任务/目标需求的大变形条件下的协同驱动和功能模块的匹配设计和实现却鲜有研究。在本研究中,通过对协同机械设计和功能集成的系统研究,我们开发了一种匹配的设计和实现方法,用于构建多功能、可按需配置的昆虫尺度软磁机器人。基于这种方法,我们报告了一种通过将标准部件库中的各种模块组装在一起来构建软磁机器人的简单方法。此外,还可以(重新)配置具有理想运动和功能的各种软磁机器人。最后,我们展示了(重新)配置的软磁机器人可转换为不同模式,以适应和应对不同的场景。具有理想驱动和多种功能的复杂软磁机器人的可定制物理实现,可为构建更复杂的昆虫级软磁机器铺平新的道路,并很快应用于实际应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synergistical Mechanical Design and Function Integration for Insect-Scale On-Demand Configurable Multifunctional Soft Magnetic Robots.

Meso- or micro-scale(or insect-scale) robots that are capable of realizing flexible locomotion and/or carrying on complex tasks in a remotely controllable manner hold great promise in diverse fields, such as biomedical applications, unknown environment exploration, in situ operation in confined spaces, and so on. However, the existing design and implementation approaches for such multifunctional, on-demand configurable insect-scale robots are often focusing on their actuation or locomotion, while matched design and implementation with synergistic actuation and function modules under large deformation targeting varying task/target demands are rarely investigated. In this study, through systematical investigations on synergistical mechanical design and function integration, we developed a matched design and implementation method for constructing multifunctional, on-demand configurable insect-scale soft magnetic robots. Based on such a method, we report a simple approach to construct soft magnetic robots by assembling various modules from the standard part library together. Moreover, diverse soft magnetic robots with desirable motion and function can be (re)configured. Finally, we demonstrated (re)configurable soft magnetic robots shifting into different modes to adapt and respond to varying scenarios. The customizable physical realization of complex soft robots with desirable actuation and diverse functions can pave a new way for constructing more sophisticated insect-scale soft machines that can be applied to practical applications soon.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Soft Robotics
Soft Robotics ROBOTICS-
CiteScore
15.50
自引率
5.10%
发文量
128
期刊介绍: Soft Robotics (SoRo) stands as a premier robotics journal, showcasing top-tier, peer-reviewed research on the forefront of soft and deformable robotics. Encompassing flexible electronics, materials science, computer science, and biomechanics, it pioneers breakthroughs in robotic technology capable of safe interaction with living systems and navigating complex environments, natural or human-made. With a multidisciplinary approach, SoRo integrates advancements in biomedical engineering, biomechanics, mathematical modeling, biopolymer chemistry, computer science, and tissue engineering, offering comprehensive insights into constructing adaptable devices that can undergo significant changes in shape and size. This transformative technology finds critical applications in surgery, assistive healthcare devices, emergency search and rescue, space instrument repair, mine detection, and beyond.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信