{"title":"碳固存:植物生长的反直觉反馈。","authors":"Juan Alonso-Serra","doi":"10.1017/qpb.2021.11","DOIUrl":null,"url":null,"abstract":"<p><p>Interaction between the atmosphere, plants and soils plays an important role in the carbon cycle. Soils contain vast amounts of carbon, but their capacity to keep it belowground depends on the long-term ecosystem dynamics. Plant growth has the potential of adding or releasing carbon from soil stocks. Since plant growth is also stimulated by higher CO<sub>2</sub> levels, understanding its impact on soils becomes crucial for estimating carbon sequestration at the ecosystem level. A recent meta-analysis explored the effect CO<sub>2</sub> levels have in plant versus soil carbon sequestration. The integration of 108 experiments performed across different environments revealed that the magnitude of plant growth and the nutrient acquisition strategy result in counterintuitive feedback for soil carbon sequestration.</p>","PeriodicalId":20825,"journal":{"name":"Quantitative Plant Biology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10095961/pdf/","citationCount":"0","resultStr":"{\"title\":\"Carbon sequestration: counterintuitive feedback of plant growth.\",\"authors\":\"Juan Alonso-Serra\",\"doi\":\"10.1017/qpb.2021.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Interaction between the atmosphere, plants and soils plays an important role in the carbon cycle. Soils contain vast amounts of carbon, but their capacity to keep it belowground depends on the long-term ecosystem dynamics. Plant growth has the potential of adding or releasing carbon from soil stocks. Since plant growth is also stimulated by higher CO<sub>2</sub> levels, understanding its impact on soils becomes crucial for estimating carbon sequestration at the ecosystem level. A recent meta-analysis explored the effect CO<sub>2</sub> levels have in plant versus soil carbon sequestration. The integration of 108 experiments performed across different environments revealed that the magnitude of plant growth and the nutrient acquisition strategy result in counterintuitive feedback for soil carbon sequestration.</p>\",\"PeriodicalId\":20825,\"journal\":{\"name\":\"Quantitative Plant Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10095961/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantitative Plant Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/qpb.2021.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantitative Plant Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/qpb.2021.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Carbon sequestration: counterintuitive feedback of plant growth.
Interaction between the atmosphere, plants and soils plays an important role in the carbon cycle. Soils contain vast amounts of carbon, but their capacity to keep it belowground depends on the long-term ecosystem dynamics. Plant growth has the potential of adding or releasing carbon from soil stocks. Since plant growth is also stimulated by higher CO2 levels, understanding its impact on soils becomes crucial for estimating carbon sequestration at the ecosystem level. A recent meta-analysis explored the effect CO2 levels have in plant versus soil carbon sequestration. The integration of 108 experiments performed across different environments revealed that the magnitude of plant growth and the nutrient acquisition strategy result in counterintuitive feedback for soil carbon sequestration.