基于izhikevich的生物神经元模型模拟SA-I传入神经元的长期峰值频率适应。

IF 1.8 4区 医学 Q3 MEDICINE, RESEARCH & EXPERIMENTAL
Jaehun Kim, Young In Choi, Jeong-Woo Sohn, Sung-Phil Kim, Sung Jun Jung
{"title":"基于izhikevich的生物神经元模型模拟SA-I传入神经元的长期峰值频率适应。","authors":"Jaehun Kim,&nbsp;Young In Choi,&nbsp;Jeong-Woo Sohn,&nbsp;Sung-Phil Kim,&nbsp;Sung Jun Jung","doi":"10.5607/en23005","DOIUrl":null,"url":null,"abstract":"<p><p>To develop a biomimetic artificial tactile sensing system capable of detecting sustained mechanical touch, we propose a novel biological neuron model (BNM) for slowly adapting type I (SA-I) afferent neurons. The proposed BNM is designed by modifying the Izhikevich model to incorporate long-term spike frequency adaptation. Adjusting the parameters renders the Izhikevich model describing various neuronal firing patterns. We also search for optimal parameter values for the proposed BNM to describe firing patterns of biological SA-I afferent neurons in response to sustained pressure longer than 1-second. We obtain the firing data of SA-I afferent neurons for six different mechanical pressure ranging from 0.1 mN to 300 mN from the ex-vivo experiment on SA-I afferent neurons in rodents. Upon finding the optimal parameters, we generate spike trains using the proposed BNM and compare the resulting spike trains to those of biological SA-I afferent neurons using the spike distance metrics. We verify that the proposed BNM can generate spike trains showing long-term adaptation, which is not achievable by other conventional models. Our new model may offer an essential function to artificial tactile sensing technology to perceive sustained mechanical touch.</p>","PeriodicalId":12263,"journal":{"name":"Experimental Neurobiology","volume":"32 3","pages":"157-169"},"PeriodicalIF":1.8000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/ef/94/en-32-3-157.PMC10327931.pdf","citationCount":"0","resultStr":"{\"title\":\"Modeling Long-term Spike Frequency Adaptation in SA-I Afferent Neurons Using an Izhikevich-based Biological Neuron Model.\",\"authors\":\"Jaehun Kim,&nbsp;Young In Choi,&nbsp;Jeong-Woo Sohn,&nbsp;Sung-Phil Kim,&nbsp;Sung Jun Jung\",\"doi\":\"10.5607/en23005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>To develop a biomimetic artificial tactile sensing system capable of detecting sustained mechanical touch, we propose a novel biological neuron model (BNM) for slowly adapting type I (SA-I) afferent neurons. The proposed BNM is designed by modifying the Izhikevich model to incorporate long-term spike frequency adaptation. Adjusting the parameters renders the Izhikevich model describing various neuronal firing patterns. We also search for optimal parameter values for the proposed BNM to describe firing patterns of biological SA-I afferent neurons in response to sustained pressure longer than 1-second. We obtain the firing data of SA-I afferent neurons for six different mechanical pressure ranging from 0.1 mN to 300 mN from the ex-vivo experiment on SA-I afferent neurons in rodents. Upon finding the optimal parameters, we generate spike trains using the proposed BNM and compare the resulting spike trains to those of biological SA-I afferent neurons using the spike distance metrics. We verify that the proposed BNM can generate spike trains showing long-term adaptation, which is not achievable by other conventional models. Our new model may offer an essential function to artificial tactile sensing technology to perceive sustained mechanical touch.</p>\",\"PeriodicalId\":12263,\"journal\":{\"name\":\"Experimental Neurobiology\",\"volume\":\"32 3\",\"pages\":\"157-169\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/ef/94/en-32-3-157.PMC10327931.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental Neurobiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.5607/en23005\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.5607/en23005","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

为了开发一种能够检测持续机械触觉的仿生人工触觉传感系统,我们提出了一种新的生物神经元模型(BNM),用于慢适应I型(SA-I)传入神经元。提出的BNM是通过修改Izhikevich模型来引入长期尖峰频率自适应来设计的。调整参数使Izhikevich模型描述各种神经元放电模式。我们还为所提出的BNM寻找最佳参数值,以描述生物SA-I传入神经元在持续压力超过1秒时的放电模式。通过对啮齿动物SA-I传入神经元的离体实验,获得了SA-I传入神经元在0.1 mN ~ 300 mN 6种不同机械压力下的放电数据。在找到最佳参数后,我们使用所提出的BNM生成尖峰序列,并使用尖峰距离度量将产生的尖峰序列与生物SA-I传入神经元的尖峰序列进行比较。我们验证了所提出的BNM可以产生具有长期适应性的尖峰列车,这是其他传统模型无法实现的。我们的新模型可能为人工触觉传感技术提供必要的功能,以感知持续的机械触摸。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling Long-term Spike Frequency Adaptation in SA-I Afferent Neurons Using an Izhikevich-based Biological Neuron Model.

To develop a biomimetic artificial tactile sensing system capable of detecting sustained mechanical touch, we propose a novel biological neuron model (BNM) for slowly adapting type I (SA-I) afferent neurons. The proposed BNM is designed by modifying the Izhikevich model to incorporate long-term spike frequency adaptation. Adjusting the parameters renders the Izhikevich model describing various neuronal firing patterns. We also search for optimal parameter values for the proposed BNM to describe firing patterns of biological SA-I afferent neurons in response to sustained pressure longer than 1-second. We obtain the firing data of SA-I afferent neurons for six different mechanical pressure ranging from 0.1 mN to 300 mN from the ex-vivo experiment on SA-I afferent neurons in rodents. Upon finding the optimal parameters, we generate spike trains using the proposed BNM and compare the resulting spike trains to those of biological SA-I afferent neurons using the spike distance metrics. We verify that the proposed BNM can generate spike trains showing long-term adaptation, which is not achievable by other conventional models. Our new model may offer an essential function to artificial tactile sensing technology to perceive sustained mechanical touch.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Experimental Neurobiology
Experimental Neurobiology Neuroscience-Cellular and Molecular Neuroscience
CiteScore
4.30
自引率
4.20%
发文量
29
期刊介绍: Experimental Neurobiology is an international forum for interdisciplinary investigations of the nervous system. The journal aims to publish papers that present novel observations in all fields of neuroscience, encompassing cellular & molecular neuroscience, development/differentiation/plasticity, neurobiology of disease, systems/cognitive/behavioral neuroscience, drug development & industrial application, brain-machine interface, methodologies/tools, and clinical neuroscience. It should be of interest to a broad scientific audience working on the biochemical, molecular biological, cell biological, pharmacological, physiological, psychophysical, clinical, anatomical, cognitive, and biotechnological aspects of neuroscience. The journal publishes both original research articles and review articles. Experimental Neurobiology is an open access, peer-reviewed online journal. The journal is published jointly by The Korean Society for Brain and Neural Sciences & The Korean Society for Neurodegenerative Disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信