在大规模评估中检测项目错位的稳健方法。

IF 2.1 3区 心理学 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Educational and Psychological Measurement Pub Date : 2023-08-01 Epub Date: 2022-07-02 DOI:10.1177/00131644221105819
Matthias von Davier, Ummugul Bezirhan
{"title":"在大规模评估中检测项目错位的稳健方法。","authors":"Matthias von Davier, Ummugul Bezirhan","doi":"10.1177/00131644221105819","DOIUrl":null,"url":null,"abstract":"<p><p>Viable methods for the identification of item misfit or Differential Item Functioning (DIF) are central to scale construction and sound measurement. Many approaches rely on the derivation of a limiting distribution under the assumption that a certain model fits the data perfectly. Typical DIF assumptions such as the monotonicity and population independence of item functions are present even in classical test theory but are more explicitly stated when using item response theory or other latent variable models for the assessment of item fit. The work presented here provides a robust approach for DIF detection that does not assume perfect model data fit, but rather uses Tukey's concept of contaminated distributions. The approach uses robust outlier detection to flag items for which adequate model data fit cannot be established.</p>","PeriodicalId":11502,"journal":{"name":"Educational and Psychological Measurement","volume":"83 4","pages":"740-765"},"PeriodicalIF":2.1000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10311954/pdf/","citationCount":"0","resultStr":"{\"title\":\"A Robust Method for Detecting Item Misfit in Large-Scale Assessments.\",\"authors\":\"Matthias von Davier, Ummugul Bezirhan\",\"doi\":\"10.1177/00131644221105819\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Viable methods for the identification of item misfit or Differential Item Functioning (DIF) are central to scale construction and sound measurement. Many approaches rely on the derivation of a limiting distribution under the assumption that a certain model fits the data perfectly. Typical DIF assumptions such as the monotonicity and population independence of item functions are present even in classical test theory but are more explicitly stated when using item response theory or other latent variable models for the assessment of item fit. The work presented here provides a robust approach for DIF detection that does not assume perfect model data fit, but rather uses Tukey's concept of contaminated distributions. The approach uses robust outlier detection to flag items for which adequate model data fit cannot be established.</p>\",\"PeriodicalId\":11502,\"journal\":{\"name\":\"Educational and Psychological Measurement\",\"volume\":\"83 4\",\"pages\":\"740-765\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10311954/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Educational and Psychological Measurement\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1177/00131644221105819\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/7/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Educational and Psychological Measurement","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1177/00131644221105819","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/7/2 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

识别项目不拟合或差异项目功能(DIF)的可行方法是量表构建和合理测量的核心。许多方法都依赖于在某个模型完全拟合数据的假设下推导出一个极限分布。典型的 DIF 假设,如项目函数的单调性和群体独立性,甚至在经典测验理论中都存在,但在使用项目反应理论或其他潜变量模型评估项目拟合度时,这些假设会得到更明确的阐述。本文介绍的工作提供了一种稳健的 DIF 检测方法,它不假定模型数据完全拟合,而是使用 Tukey 的污染分布概念。该方法使用稳健离群点检测来标记无法建立充分模型数据拟合的项目。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Robust Method for Detecting Item Misfit in Large-Scale Assessments.

Viable methods for the identification of item misfit or Differential Item Functioning (DIF) are central to scale construction and sound measurement. Many approaches rely on the derivation of a limiting distribution under the assumption that a certain model fits the data perfectly. Typical DIF assumptions such as the monotonicity and population independence of item functions are present even in classical test theory but are more explicitly stated when using item response theory or other latent variable models for the assessment of item fit. The work presented here provides a robust approach for DIF detection that does not assume perfect model data fit, but rather uses Tukey's concept of contaminated distributions. The approach uses robust outlier detection to flag items for which adequate model data fit cannot be established.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Educational and Psychological Measurement
Educational and Psychological Measurement 医学-数学跨学科应用
CiteScore
5.50
自引率
7.40%
发文量
49
审稿时长
6-12 weeks
期刊介绍: Educational and Psychological Measurement (EPM) publishes referred scholarly work from all academic disciplines interested in the study of measurement theory, problems, and issues. Theoretical articles address new developments and techniques, and applied articles deal with innovation applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信