Ashwini Kumar Nepal, Hubertus W van Essen, Renate T de Jongh, Natasja M van Schoor, René H J Otten, Dirk Vanderschueren, Paul Lips, Nathalie Bravenboer
{"title":"在啮齿动物体内轴向负荷的方法学方面:一个系统的回顾。","authors":"Ashwini Kumar Nepal, Hubertus W van Essen, Renate T de Jongh, Natasja M van Schoor, René H J Otten, Dirk Vanderschueren, Paul Lips, Nathalie Bravenboer","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Axial loading in rodents provides a controlled setting for mechanical loading, because load and subsequent strain, frequency, number of cycles and rest insertion between cycles, are precisely defined. These methodological aspects as well as factors, such as ovariectomy, aging, and disuse may affect the outcome of the loading test, including bone mass, structure, and bone mineral density. This review aims to overview methodological aspects and modifying factors in axial loading on bone outcomes. A systematic literature search was performed in bibliographic databases until December 2021, which resulted in 2183 articles. A total of 144 articles were selected for this review: 23 rat studies, 74 mouse studies, and 47 knock out (KO) mouse studies. Results indicated that peak load, frequency, and number of loading cycles mainly affected the outcomes of bone mass, structure, and density in both rat and mouse studies. It is crucial to consider methodological parameters and modifying factors such as age, sex-steroid deficiency, and disuse in loading protocols for the prediction of loading-related bone outcomes.</p>","PeriodicalId":16430,"journal":{"name":"Journal of musculoskeletal & neuronal interactions","volume":"23 2","pages":"236-262"},"PeriodicalIF":1.7000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/68/7e/JMNI-23-236.PMC10233220.pdf","citationCount":"0","resultStr":"{\"title\":\"Methodological aspects of <i>in vivo</i> axial loading in rodents: a systematic review.\",\"authors\":\"Ashwini Kumar Nepal, Hubertus W van Essen, Renate T de Jongh, Natasja M van Schoor, René H J Otten, Dirk Vanderschueren, Paul Lips, Nathalie Bravenboer\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Axial loading in rodents provides a controlled setting for mechanical loading, because load and subsequent strain, frequency, number of cycles and rest insertion between cycles, are precisely defined. These methodological aspects as well as factors, such as ovariectomy, aging, and disuse may affect the outcome of the loading test, including bone mass, structure, and bone mineral density. This review aims to overview methodological aspects and modifying factors in axial loading on bone outcomes. A systematic literature search was performed in bibliographic databases until December 2021, which resulted in 2183 articles. A total of 144 articles were selected for this review: 23 rat studies, 74 mouse studies, and 47 knock out (KO) mouse studies. Results indicated that peak load, frequency, and number of loading cycles mainly affected the outcomes of bone mass, structure, and density in both rat and mouse studies. It is crucial to consider methodological parameters and modifying factors such as age, sex-steroid deficiency, and disuse in loading protocols for the prediction of loading-related bone outcomes.</p>\",\"PeriodicalId\":16430,\"journal\":{\"name\":\"Journal of musculoskeletal & neuronal interactions\",\"volume\":\"23 2\",\"pages\":\"236-262\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/68/7e/JMNI-23-236.PMC10233220.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of musculoskeletal & neuronal interactions\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of musculoskeletal & neuronal interactions","FirstCategoryId":"3","ListUrlMain":"","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Methodological aspects of in vivo axial loading in rodents: a systematic review.
Axial loading in rodents provides a controlled setting for mechanical loading, because load and subsequent strain, frequency, number of cycles and rest insertion between cycles, are precisely defined. These methodological aspects as well as factors, such as ovariectomy, aging, and disuse may affect the outcome of the loading test, including bone mass, structure, and bone mineral density. This review aims to overview methodological aspects and modifying factors in axial loading on bone outcomes. A systematic literature search was performed in bibliographic databases until December 2021, which resulted in 2183 articles. A total of 144 articles were selected for this review: 23 rat studies, 74 mouse studies, and 47 knock out (KO) mouse studies. Results indicated that peak load, frequency, and number of loading cycles mainly affected the outcomes of bone mass, structure, and density in both rat and mouse studies. It is crucial to consider methodological parameters and modifying factors such as age, sex-steroid deficiency, and disuse in loading protocols for the prediction of loading-related bone outcomes.
期刊介绍:
The Journal of Musculoskeletal and Neuronal Interactions (JMNI) is an academic journal dealing with the pathophysiology and treatment of musculoskeletal disorders. It is published quarterly (months of issue March, June, September, December). Its purpose is to publish original, peer-reviewed papers of research and clinical experience in all areas of the musculoskeletal system and its interactions with the nervous system, especially metabolic bone diseases, with particular emphasis on osteoporosis. Additionally, JMNI publishes the Abstracts from the biannual meetings of the International Society of Musculoskeletal and Neuronal Interactions, and hosts Abstracts of other meetings on topics related to the aims and scope of JMNI.