Steffan Green, Thomas Binder, Erik Hagberg and Bala Subramaniam*,
{"title":"草木质素中木质素-碳水化合物复合物含量与快速喷雾臭氧分解产酚醛的关系","authors":"Steffan Green, Thomas Binder, Erik Hagberg and Bala Subramaniam*, ","doi":"10.1021/acsengineeringau.2c00041","DOIUrl":null,"url":null,"abstract":"<p >We provide strong evidence that the amounts of phenolic aldehydes (vanillin and <i>p</i>-hydroxybenzaldehyde, <i>p</i>HB) selectively released during rapid ozonolysis of grass lignins are correlated with the unsubstituted aryl carbons of lignin–carbohydrate complexes present in these lignins. In the case of acetosolv lignin from corn stover, we observed a steady yield of vanillin and <i>p</i>HB (cumulatively ∼5 wt % of the initial lignin). We demonstrate the continuous ozonolysis of the lignin in a spray reactor at ambient temperature and pressure. In sharp contrast, similar ozonolysis of acetosolv lignin from corn cobs resulted in a twofold increase in the combined yield (∼10 wt %) of vanillin and <i>p</i>HB. Structural analysis with <sup>1</sup>H–<sup>13</sup>C heteronuclear single quantum coherence (HSQC) nuclear magnetic resonance revealed that signals assigned to unsubstituted aryl carbons of lignin–carbohydrate complexes are quantitatively correlated to phenolic aldehyde production from spray ozonolysis. The ratios of the integrated peak volumes corresponding to coumarates and ferulates in the HSQC spectra of cob and corn stover lignins (SLs) are 2.4 and 2.0, respectively. These ratios are nearly identical to the observed 2.3-fold increase in <i>p</i>HB and 1.8-fold increase in vanillin production rates from corn cob lignin compared to corn SL. Considering that the annual U.S. lignin capacity from these grass lignin sources is ∼60 million MT, the value creation potential from these flavoring agents is conservatively ∼$50 million annually from just 10% of the lignin. These new insights into structure/product correlation and spray reactor characteristics provide rational guidance for developing viable technologies to valorize grass lignins.</p>","PeriodicalId":29804,"journal":{"name":"ACS Engineering Au","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2022-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/63/4c/eg2c00041.PMC10119922.pdf","citationCount":"0","resultStr":"{\"title\":\"Correlation between Lignin–Carbohydrate Complex Content in Grass Lignins and Phenolic Aldehyde Production by Rapid Spray Ozonolysis\",\"authors\":\"Steffan Green, Thomas Binder, Erik Hagberg and Bala Subramaniam*, \",\"doi\":\"10.1021/acsengineeringau.2c00041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >We provide strong evidence that the amounts of phenolic aldehydes (vanillin and <i>p</i>-hydroxybenzaldehyde, <i>p</i>HB) selectively released during rapid ozonolysis of grass lignins are correlated with the unsubstituted aryl carbons of lignin–carbohydrate complexes present in these lignins. In the case of acetosolv lignin from corn stover, we observed a steady yield of vanillin and <i>p</i>HB (cumulatively ∼5 wt % of the initial lignin). We demonstrate the continuous ozonolysis of the lignin in a spray reactor at ambient temperature and pressure. In sharp contrast, similar ozonolysis of acetosolv lignin from corn cobs resulted in a twofold increase in the combined yield (∼10 wt %) of vanillin and <i>p</i>HB. Structural analysis with <sup>1</sup>H–<sup>13</sup>C heteronuclear single quantum coherence (HSQC) nuclear magnetic resonance revealed that signals assigned to unsubstituted aryl carbons of lignin–carbohydrate complexes are quantitatively correlated to phenolic aldehyde production from spray ozonolysis. The ratios of the integrated peak volumes corresponding to coumarates and ferulates in the HSQC spectra of cob and corn stover lignins (SLs) are 2.4 and 2.0, respectively. These ratios are nearly identical to the observed 2.3-fold increase in <i>p</i>HB and 1.8-fold increase in vanillin production rates from corn cob lignin compared to corn SL. Considering that the annual U.S. lignin capacity from these grass lignin sources is ∼60 million MT, the value creation potential from these flavoring agents is conservatively ∼$50 million annually from just 10% of the lignin. These new insights into structure/product correlation and spray reactor characteristics provide rational guidance for developing viable technologies to valorize grass lignins.</p>\",\"PeriodicalId\":29804,\"journal\":{\"name\":\"ACS Engineering Au\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2022-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/63/4c/eg2c00041.PMC10119922.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Engineering Au\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsengineeringau.2c00041\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Engineering Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsengineeringau.2c00041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Correlation between Lignin–Carbohydrate Complex Content in Grass Lignins and Phenolic Aldehyde Production by Rapid Spray Ozonolysis
We provide strong evidence that the amounts of phenolic aldehydes (vanillin and p-hydroxybenzaldehyde, pHB) selectively released during rapid ozonolysis of grass lignins are correlated with the unsubstituted aryl carbons of lignin–carbohydrate complexes present in these lignins. In the case of acetosolv lignin from corn stover, we observed a steady yield of vanillin and pHB (cumulatively ∼5 wt % of the initial lignin). We demonstrate the continuous ozonolysis of the lignin in a spray reactor at ambient temperature and pressure. In sharp contrast, similar ozonolysis of acetosolv lignin from corn cobs resulted in a twofold increase in the combined yield (∼10 wt %) of vanillin and pHB. Structural analysis with 1H–13C heteronuclear single quantum coherence (HSQC) nuclear magnetic resonance revealed that signals assigned to unsubstituted aryl carbons of lignin–carbohydrate complexes are quantitatively correlated to phenolic aldehyde production from spray ozonolysis. The ratios of the integrated peak volumes corresponding to coumarates and ferulates in the HSQC spectra of cob and corn stover lignins (SLs) are 2.4 and 2.0, respectively. These ratios are nearly identical to the observed 2.3-fold increase in pHB and 1.8-fold increase in vanillin production rates from corn cob lignin compared to corn SL. Considering that the annual U.S. lignin capacity from these grass lignin sources is ∼60 million MT, the value creation potential from these flavoring agents is conservatively ∼$50 million annually from just 10% of the lignin. These new insights into structure/product correlation and spray reactor characteristics provide rational guidance for developing viable technologies to valorize grass lignins.
期刊介绍:
)ACS Engineering Au is an open access journal that reports significant advances in chemical engineering applied chemistry and energy covering fundamentals processes and products. The journal's broad scope includes experimental theoretical mathematical computational chemical and physical research from academic and industrial settings. Short letters comprehensive articles reviews and perspectives are welcome on topics that include:Fundamental research in such areas as thermodynamics transport phenomena (flow mixing mass & heat transfer) chemical reaction kinetics and engineering catalysis separations interfacial phenomena and materialsProcess design development and intensification (e.g. process technologies for chemicals and materials synthesis and design methods process intensification multiphase reactors scale-up systems analysis process control data correlation schemes modeling machine learning Artificial Intelligence)Product research and development involving chemical and engineering aspects (e.g. catalysts plastics elastomers fibers adhesives coatings paper membranes lubricants ceramics aerosols fluidic devices intensified process equipment)Energy and fuels (e.g. pre-treatment processing and utilization of renewable energy resources; processing and utilization of fuels; properties and structure or molecular composition of both raw fuels and refined products; fuel cells hydrogen batteries; photochemical fuel and energy production; decarbonization; electrification; microwave; cavitation)Measurement techniques computational models and data on thermo-physical thermodynamic and transport properties of materials and phase equilibrium behaviorNew methods models and tools (e.g. real-time data analytics multi-scale models physics informed machine learning models machine learning enhanced physics-based models soft sensors high-performance computing)