Eun-Nam Kim, Jung-Ah Seo, Bae-Hwan Kim, Gil-Saeng Jeong
{"title":"使用具有二极管阵列检测器的高压液相色谱系统,通过直接肽反应性测定(DPRA)确定纳米颗粒对肽的反应性。","authors":"Eun-Nam Kim, Jung-Ah Seo, Bae-Hwan Kim, Gil-Saeng Jeong","doi":"10.1007/s43188-022-00166-w","DOIUrl":null,"url":null,"abstract":"<p><p>The possibility of inducing skin sensitization reactions following exposure to various chemicals can lead to skin diseases, and the evaluation of skin sensitivity to such substances is very important. However, as animal tests for skin sensitization are prohibited, the OECD Test Guideline 442 C was designated as part of an alternative testing method. Therefore, in this study, the reactivity of cysteine and lysine peptides to nanoparticle substrates was identified through HPLC-DAD analysis according to the skin sensitization animal replacement test method specified in the OECD Test Guideline 442 C. In this study, all criteria for skin sensitization experiments specified in OECD Test Guideline 442 C were satisfied. As a result of analyzing the disappearance rates of cysteine and lysine peptides for the five types of nanoparticle substrates (TiO<sub>2</sub>, CeO<sub>2</sub>, Co<sub>3</sub>O<sub>4</sub>, NiO, and Fe<sub>2</sub>O<sub>3</sub>) using the established analytical method, all were identified as positive. Therefore, our findings suggest that basic data from this technique can contribute to skin sensitization studies by providing the depletion percentage of cysteine and lysine peptides for nanoparticle materials that have not yet been tested for skin sensitization.</p>","PeriodicalId":23181,"journal":{"name":"Toxicological Research","volume":"39 3","pages":"485-495"},"PeriodicalIF":1.6000,"publicationDate":"2023-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10313635/pdf/","citationCount":"0","resultStr":"{\"title\":\"Defining the reactivity of nanoparticles to peptides through direct peptide reactivity assay (DPRA) using a high pressure liquid chromatography system with a diode array detector.\",\"authors\":\"Eun-Nam Kim, Jung-Ah Seo, Bae-Hwan Kim, Gil-Saeng Jeong\",\"doi\":\"10.1007/s43188-022-00166-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The possibility of inducing skin sensitization reactions following exposure to various chemicals can lead to skin diseases, and the evaluation of skin sensitivity to such substances is very important. However, as animal tests for skin sensitization are prohibited, the OECD Test Guideline 442 C was designated as part of an alternative testing method. Therefore, in this study, the reactivity of cysteine and lysine peptides to nanoparticle substrates was identified through HPLC-DAD analysis according to the skin sensitization animal replacement test method specified in the OECD Test Guideline 442 C. In this study, all criteria for skin sensitization experiments specified in OECD Test Guideline 442 C were satisfied. As a result of analyzing the disappearance rates of cysteine and lysine peptides for the five types of nanoparticle substrates (TiO<sub>2</sub>, CeO<sub>2</sub>, Co<sub>3</sub>O<sub>4</sub>, NiO, and Fe<sub>2</sub>O<sub>3</sub>) using the established analytical method, all were identified as positive. Therefore, our findings suggest that basic data from this technique can contribute to skin sensitization studies by providing the depletion percentage of cysteine and lysine peptides for nanoparticle materials that have not yet been tested for skin sensitization.</p>\",\"PeriodicalId\":23181,\"journal\":{\"name\":\"Toxicological Research\",\"volume\":\"39 3\",\"pages\":\"485-495\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10313635/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxicological Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s43188-022-00166-w\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/7/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q4\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicological Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s43188-022-00166-w","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/7/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"TOXICOLOGY","Score":null,"Total":0}
Defining the reactivity of nanoparticles to peptides through direct peptide reactivity assay (DPRA) using a high pressure liquid chromatography system with a diode array detector.
The possibility of inducing skin sensitization reactions following exposure to various chemicals can lead to skin diseases, and the evaluation of skin sensitivity to such substances is very important. However, as animal tests for skin sensitization are prohibited, the OECD Test Guideline 442 C was designated as part of an alternative testing method. Therefore, in this study, the reactivity of cysteine and lysine peptides to nanoparticle substrates was identified through HPLC-DAD analysis according to the skin sensitization animal replacement test method specified in the OECD Test Guideline 442 C. In this study, all criteria for skin sensitization experiments specified in OECD Test Guideline 442 C were satisfied. As a result of analyzing the disappearance rates of cysteine and lysine peptides for the five types of nanoparticle substrates (TiO2, CeO2, Co3O4, NiO, and Fe2O3) using the established analytical method, all were identified as positive. Therefore, our findings suggest that basic data from this technique can contribute to skin sensitization studies by providing the depletion percentage of cysteine and lysine peptides for nanoparticle materials that have not yet been tested for skin sensitization.
期刊介绍:
Toxicological Research is the official journal of the Korean Society of Toxicology. The journal covers all areas of Toxicological Research of chemicals, drugs and environmental agents affecting human and animals, which in turn impact public health. The journal’s mission is to disseminate scientific and technical information on diverse areas of toxicological research. Contributions by toxicologists, molecular biologists, geneticists, biochemists, pharmacologists, clinical researchers and epidemiologists with a global view on public health through toxicological research are welcome. Emphasis will be given to articles providing an understanding of the toxicological mechanisms affecting animal, human and public health. In the case of research articles using natural extracts, detailed information with respect to the origin, extraction method, chemical profiles, and characterization of standard compounds to ensure the reproducible pharmacological activity should be provided.