Chelsea Parker Duppen, Hailey Wrona, Eran Dayan, Michael D Lewek
{"title":"利用失真节奏听觉线索进行步态训练时的内隐和外显运动学习证据","authors":"Chelsea Parker Duppen, Hailey Wrona, Eran Dayan, Michael D Lewek","doi":"10.1080/00222895.2023.2231874","DOIUrl":null,"url":null,"abstract":"<p><p>Gait training with rhythmic auditory cues contains motor learning mechanisms that are weighted more explicitly than implicitly. However, various clinical populations may benefit from a shift to gait training with greater implicit motor learning mechanisms. To investigate the ability to incorporate more implicit-weighted motor learning processes during rhythmic auditory cueing, we attempted to induce error-based recalibration using a subtly varying metronome cue for naïve unimpaired young adults. We assessed the extent of implicit and explicit retention after both an isochronous metronome and subtly varying metronome frequency during treadmill and overground walking. Despite 90% of participants remaining unaware of the changing metronome frequency, participants adjusted their cadence and step length to the subtly changing metronome, both on a treadmill and overground (<i>p</i> < 0.05). However, despite evidence of both implicit and explicit processes involved with each metronome (i.e., isochronous and varying), there were no between-condition differences in implicit or explicit retention for cadence, step length, or gait speed, and thus no increased implicit learning advantage with the addition of error-based recalibration for young, unimpaired adults.</p>","PeriodicalId":50125,"journal":{"name":"Journal of Motor Behavior","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evidence of Implicit and Explicit Motor Learning during Gait Training with Distorted Rhythmic Auditory Cues.\",\"authors\":\"Chelsea Parker Duppen, Hailey Wrona, Eran Dayan, Michael D Lewek\",\"doi\":\"10.1080/00222895.2023.2231874\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Gait training with rhythmic auditory cues contains motor learning mechanisms that are weighted more explicitly than implicitly. However, various clinical populations may benefit from a shift to gait training with greater implicit motor learning mechanisms. To investigate the ability to incorporate more implicit-weighted motor learning processes during rhythmic auditory cueing, we attempted to induce error-based recalibration using a subtly varying metronome cue for naïve unimpaired young adults. We assessed the extent of implicit and explicit retention after both an isochronous metronome and subtly varying metronome frequency during treadmill and overground walking. Despite 90% of participants remaining unaware of the changing metronome frequency, participants adjusted their cadence and step length to the subtly changing metronome, both on a treadmill and overground (<i>p</i> < 0.05). However, despite evidence of both implicit and explicit processes involved with each metronome (i.e., isochronous and varying), there were no between-condition differences in implicit or explicit retention for cadence, step length, or gait speed, and thus no increased implicit learning advantage with the addition of error-based recalibration for young, unimpaired adults.</p>\",\"PeriodicalId\":50125,\"journal\":{\"name\":\"Journal of Motor Behavior\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Motor Behavior\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1080/00222895.2023.2231874\",\"RegionNum\":4,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/7/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Motor Behavior","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1080/00222895.2023.2231874","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/7/2 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Evidence of Implicit and Explicit Motor Learning during Gait Training with Distorted Rhythmic Auditory Cues.
Gait training with rhythmic auditory cues contains motor learning mechanisms that are weighted more explicitly than implicitly. However, various clinical populations may benefit from a shift to gait training with greater implicit motor learning mechanisms. To investigate the ability to incorporate more implicit-weighted motor learning processes during rhythmic auditory cueing, we attempted to induce error-based recalibration using a subtly varying metronome cue for naïve unimpaired young adults. We assessed the extent of implicit and explicit retention after both an isochronous metronome and subtly varying metronome frequency during treadmill and overground walking. Despite 90% of participants remaining unaware of the changing metronome frequency, participants adjusted their cadence and step length to the subtly changing metronome, both on a treadmill and overground (p < 0.05). However, despite evidence of both implicit and explicit processes involved with each metronome (i.e., isochronous and varying), there were no between-condition differences in implicit or explicit retention for cadence, step length, or gait speed, and thus no increased implicit learning advantage with the addition of error-based recalibration for young, unimpaired adults.
期刊介绍:
The Journal of Motor Behavior, a multidisciplinary journal of movement neuroscience, publishes articles that contribute to a basic understanding of motor control. Articles from different disciplinary perspectives and levels of analysis are encouraged, including neurophysiological, biomechanical, electrophysiological, psychological, mathematical and physical, and clinical approaches. Applied studies are acceptable only to the extent that they provide a significant contribution to a basic issue in motor control. Of special interest to the journal are those articles that attempt to bridge insights from different disciplinary perspectives to infer processes underlying motor control. Those approaches may embrace postural, locomotive, and manipulative aspects of motor functions, as well as coordination of speech articulators and eye movements. Articles dealing with analytical techniques and mathematical modeling are welcome.