神经组织对铁下垂易感性的起源

Jessica Snyder, Zhihao Wu
{"title":"神经组织对铁下垂易感性的起源","authors":"Jessica Snyder,&nbsp;Zhihao Wu","doi":"10.1016/j.cellin.2023.100091","DOIUrl":null,"url":null,"abstract":"<div><p>Ferroptosis is a newly defined form of programmed cell death. It possesses unique processes of cell demise, cytopathological changes, and independent signal regulation pathways. Ferroptosis is considered to be deeply involved in the development of many diseases, including cancer, cardiovascular diseases, and neurodegeneration. Intriguingly, why cells in certain tissues and organs (such as the central nervous system, CNS) are more sensitive to changes in ferroptosis remains a question that has not been carefully discussed. In this Holmesian review, we discuss lipid composition as a potential but often overlooked determining factor in ferroptosis sensitivity and the role of polyunsaturated fatty acids (PUFAs) in the pathogenesis of several common human neurodegenerative diseases. In subsequent studies of ferroptosis, lipid composition needs to be given special attention, as it may significantly affect the susceptibility of the cell model used (or the tissue studied).</p></div>","PeriodicalId":72541,"journal":{"name":"Cell insight","volume":"2 3","pages":"Article 100091"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/43/ef/main.PMC10308196.pdf","citationCount":"0","resultStr":"{\"title\":\"Origins of nervous tissue susceptibility to ferroptosis\",\"authors\":\"Jessica Snyder,&nbsp;Zhihao Wu\",\"doi\":\"10.1016/j.cellin.2023.100091\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Ferroptosis is a newly defined form of programmed cell death. It possesses unique processes of cell demise, cytopathological changes, and independent signal regulation pathways. Ferroptosis is considered to be deeply involved in the development of many diseases, including cancer, cardiovascular diseases, and neurodegeneration. Intriguingly, why cells in certain tissues and organs (such as the central nervous system, CNS) are more sensitive to changes in ferroptosis remains a question that has not been carefully discussed. In this Holmesian review, we discuss lipid composition as a potential but often overlooked determining factor in ferroptosis sensitivity and the role of polyunsaturated fatty acids (PUFAs) in the pathogenesis of several common human neurodegenerative diseases. In subsequent studies of ferroptosis, lipid composition needs to be given special attention, as it may significantly affect the susceptibility of the cell model used (or the tissue studied).</p></div>\",\"PeriodicalId\":72541,\"journal\":{\"name\":\"Cell insight\",\"volume\":\"2 3\",\"pages\":\"Article 100091\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/43/ef/main.PMC10308196.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell insight\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772892723000159\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell insight","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772892723000159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

脱铁症是一种新定义的程序性细胞死亡形式。它具有独特的细胞死亡过程、细胞病理学变化和独立的信号调节途径。脱铁症被认为与许多疾病的发展密切相关,包括癌症、心血管疾病和神经退行性变。有趣的是,为什么某些组织和器官(如中枢神经系统,CNS)中的细胞对脱铁性贫血的变化更敏感,这仍然是一个尚未仔细讨论的问题。在这篇Holmesian综述中,我们讨论了脂质成分作为脱铁敏感性的一个潜在但经常被忽视的决定因素,以及多不饱和脂肪酸(PUFA)在几种常见人类神经退行性疾病发病机制中的作用。在随后的脱铁性贫血研究中,需要特别注意脂质成分,因为它可能会显著影响所用细胞模型(或所研究组织)的易感性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Origins of nervous tissue susceptibility to ferroptosis

Origins of nervous tissue susceptibility to ferroptosis

Ferroptosis is a newly defined form of programmed cell death. It possesses unique processes of cell demise, cytopathological changes, and independent signal regulation pathways. Ferroptosis is considered to be deeply involved in the development of many diseases, including cancer, cardiovascular diseases, and neurodegeneration. Intriguingly, why cells in certain tissues and organs (such as the central nervous system, CNS) are more sensitive to changes in ferroptosis remains a question that has not been carefully discussed. In this Holmesian review, we discuss lipid composition as a potential but often overlooked determining factor in ferroptosis sensitivity and the role of polyunsaturated fatty acids (PUFAs) in the pathogenesis of several common human neurodegenerative diseases. In subsequent studies of ferroptosis, lipid composition needs to be given special attention, as it may significantly affect the susceptibility of the cell model used (or the tissue studied).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell insight
Cell insight Neuroscience (General), Biochemistry, Genetics and Molecular Biology (General), Cancer Research, Cell Biology
CiteScore
2.70
自引率
0.00%
发文量
0
审稿时长
35 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信