{"title":"用于预防植入物相关感染的载胸腺膜的合成和表征。","authors":"Raziyeh Najafloo, Rana Imani, Mahla Behyari, Shirin Nour","doi":"10.52547/ibj.3788","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Infection is one of the significant challenges in medical implant-related surgeries. Despite systemic antibiotic therapies, bacterial growth after implantation may cause implant failure. Nowadays, unlike the systemic therapy, local controlled release of antibiotic agents is considered an effective approach for the prevention of implant-related infections. The present study aimed to develop a niosomal nanocarrier incorporated into fibroin films for local and continuous delivery of thymol, a natural plant-derived antimicrobial agent for preventing infections caused by implant-related.</p><p><strong>Methods: </strong>Niosomes containing thymol were prepared by thin-film hydration technique. Thymol sustained release from the prepared films was assessed for 14 days. Antibacterial activities of the synthesized films were also evaluated by the agar diffusion technique against Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus.</p><p><strong>Results: </strong>The release behavior from the niosomal thymol films showed a sustained manner, in which the amount of the released thymol reached 40% after 14 days. The films containing thymol with and without niosome showed a significant viability against L929 fibroblast cells compared to other groups after 24 and 48 h, using MTT assay. Also, samples exhibited potent antibacterial activity against Gram-negative and Gram-positive bacteria.</p><p><strong>Conclusion: </strong>The results of this study demonstrate that the niosomal thymol-loaded fibroin film is a promising candidate for the controlled release of thymol and prevention of implant-related infection.</p>","PeriodicalId":14500,"journal":{"name":"Iranian Biomedical Journal","volume":"27 2 & 3","pages":"117-25"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10314763/pdf/","citationCount":"0","resultStr":"{\"title\":\"Synthesis and Characterization of Thymol-Loaded Niosomal Film for the Prevention of Implant-Related Infection.\",\"authors\":\"Raziyeh Najafloo, Rana Imani, Mahla Behyari, Shirin Nour\",\"doi\":\"10.52547/ibj.3788\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Infection is one of the significant challenges in medical implant-related surgeries. Despite systemic antibiotic therapies, bacterial growth after implantation may cause implant failure. Nowadays, unlike the systemic therapy, local controlled release of antibiotic agents is considered an effective approach for the prevention of implant-related infections. The present study aimed to develop a niosomal nanocarrier incorporated into fibroin films for local and continuous delivery of thymol, a natural plant-derived antimicrobial agent for preventing infections caused by implant-related.</p><p><strong>Methods: </strong>Niosomes containing thymol were prepared by thin-film hydration technique. Thymol sustained release from the prepared films was assessed for 14 days. Antibacterial activities of the synthesized films were also evaluated by the agar diffusion technique against Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus.</p><p><strong>Results: </strong>The release behavior from the niosomal thymol films showed a sustained manner, in which the amount of the released thymol reached 40% after 14 days. The films containing thymol with and without niosome showed a significant viability against L929 fibroblast cells compared to other groups after 24 and 48 h, using MTT assay. Also, samples exhibited potent antibacterial activity against Gram-negative and Gram-positive bacteria.</p><p><strong>Conclusion: </strong>The results of this study demonstrate that the niosomal thymol-loaded fibroin film is a promising candidate for the controlled release of thymol and prevention of implant-related infection.</p>\",\"PeriodicalId\":14500,\"journal\":{\"name\":\"Iranian Biomedical Journal\",\"volume\":\"27 2 & 3\",\"pages\":\"117-25\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10314763/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian Biomedical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52547/ibj.3788\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Biomedical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52547/ibj.3788","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Synthesis and Characterization of Thymol-Loaded Niosomal Film for the Prevention of Implant-Related Infection.
Background: Infection is one of the significant challenges in medical implant-related surgeries. Despite systemic antibiotic therapies, bacterial growth after implantation may cause implant failure. Nowadays, unlike the systemic therapy, local controlled release of antibiotic agents is considered an effective approach for the prevention of implant-related infections. The present study aimed to develop a niosomal nanocarrier incorporated into fibroin films for local and continuous delivery of thymol, a natural plant-derived antimicrobial agent for preventing infections caused by implant-related.
Methods: Niosomes containing thymol were prepared by thin-film hydration technique. Thymol sustained release from the prepared films was assessed for 14 days. Antibacterial activities of the synthesized films were also evaluated by the agar diffusion technique against Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus.
Results: The release behavior from the niosomal thymol films showed a sustained manner, in which the amount of the released thymol reached 40% after 14 days. The films containing thymol with and without niosome showed a significant viability against L929 fibroblast cells compared to other groups after 24 and 48 h, using MTT assay. Also, samples exhibited potent antibacterial activity against Gram-negative and Gram-positive bacteria.
Conclusion: The results of this study demonstrate that the niosomal thymol-loaded fibroin film is a promising candidate for the controlled release of thymol and prevention of implant-related infection.