{"title":"蟾蜍毒液中的一种成分树脂蟾毒苷的鉴定,它是一种新型的体外解Senoly化合物,具有潜在的雄性小鼠皮肤再生作用。","authors":"Kento Takaya, Toru Asou, Kazuo Kishi","doi":"10.1007/s10522-023-10043-0","DOIUrl":null,"url":null,"abstract":"<p><p>Senescent cells that accumulate with age have been shown to contribute to age-related diseases and organ dysfunction and have attracted attention as a target for anti-aging therapy. In particular, the use of senescent cell-depleting agents, or senolytics, has been shown to improve the aging phenotype in animal models. Since senescence has been implicated in the skin, particularly in fibroblasts, this study used aged human skin fibroblasts to investigate the effects of resibufogenin. A component of the traditional Chinese medicine toad venom, resibufogenin was investigated for senolytic and/or senomorphic activity. We found that the compound selectively caused senescent cell death without affecting proliferating cells, with a marked effect on the suppression of the senescence-associated secretory phenotype. We also found that resibufogenin causes senescent cell death by inducing a caspase-3-mediated apoptotic program. Administration of resibufogenin to aging mice resulted in an increase in dermal collagen density and subcutaneous fat, improving the phenotype of aging skin. In other words, resibufogenin ameliorates skin aging through selective induction of senescent cell apoptosis without affecting non-aged cells. This traditional compound may have potential therapeutic benefits in skin aging characterized by senescent cell accumulation.</p>","PeriodicalId":8909,"journal":{"name":"Biogerontology","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification of resibufogenin, a component of toad venom, as a novel senolytic compound in vitro and for potential skin rejuvenation in male mice.\",\"authors\":\"Kento Takaya, Toru Asou, Kazuo Kishi\",\"doi\":\"10.1007/s10522-023-10043-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Senescent cells that accumulate with age have been shown to contribute to age-related diseases and organ dysfunction and have attracted attention as a target for anti-aging therapy. In particular, the use of senescent cell-depleting agents, or senolytics, has been shown to improve the aging phenotype in animal models. Since senescence has been implicated in the skin, particularly in fibroblasts, this study used aged human skin fibroblasts to investigate the effects of resibufogenin. A component of the traditional Chinese medicine toad venom, resibufogenin was investigated for senolytic and/or senomorphic activity. We found that the compound selectively caused senescent cell death without affecting proliferating cells, with a marked effect on the suppression of the senescence-associated secretory phenotype. We also found that resibufogenin causes senescent cell death by inducing a caspase-3-mediated apoptotic program. Administration of resibufogenin to aging mice resulted in an increase in dermal collagen density and subcutaneous fat, improving the phenotype of aging skin. In other words, resibufogenin ameliorates skin aging through selective induction of senescent cell apoptosis without affecting non-aged cells. This traditional compound may have potential therapeutic benefits in skin aging characterized by senescent cell accumulation.</p>\",\"PeriodicalId\":8909,\"journal\":{\"name\":\"Biogerontology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biogerontology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10522-023-10043-0\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/7/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"GERIATRICS & GERONTOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biogerontology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10522-023-10043-0","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/7/3 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
Identification of resibufogenin, a component of toad venom, as a novel senolytic compound in vitro and for potential skin rejuvenation in male mice.
Senescent cells that accumulate with age have been shown to contribute to age-related diseases and organ dysfunction and have attracted attention as a target for anti-aging therapy. In particular, the use of senescent cell-depleting agents, or senolytics, has been shown to improve the aging phenotype in animal models. Since senescence has been implicated in the skin, particularly in fibroblasts, this study used aged human skin fibroblasts to investigate the effects of resibufogenin. A component of the traditional Chinese medicine toad venom, resibufogenin was investigated for senolytic and/or senomorphic activity. We found that the compound selectively caused senescent cell death without affecting proliferating cells, with a marked effect on the suppression of the senescence-associated secretory phenotype. We also found that resibufogenin causes senescent cell death by inducing a caspase-3-mediated apoptotic program. Administration of resibufogenin to aging mice resulted in an increase in dermal collagen density and subcutaneous fat, improving the phenotype of aging skin. In other words, resibufogenin ameliorates skin aging through selective induction of senescent cell apoptosis without affecting non-aged cells. This traditional compound may have potential therapeutic benefits in skin aging characterized by senescent cell accumulation.
期刊介绍:
The journal Biogerontology offers a platform for research which aims primarily at achieving healthy old age accompanied by improved longevity. The focus is on efforts to understand, prevent, cure or minimize age-related impairments.
Biogerontology provides a peer-reviewed forum for publishing original research data, new ideas and discussions on modulating the aging process by physical, chemical and biological means, including transgenic and knockout organisms; cell culture systems to develop new approaches and health care products for maintaining or recovering the lost biochemical functions; immunology, autoimmunity and infection in aging; vertebrates, invertebrates, micro-organisms and plants for experimental studies on genetic determinants of aging and longevity; biodemography and theoretical models linking aging and survival kinetics.