Aishat O Olatunji, Joseph O Ayo, Mohammed M Suleiman, Suleiman F Ambali, Muftau Shittu, Ganiu J Akorede, Lukman O Raji, Jamila A Atata, Khalid T Biobaku, Mistura O Azeez
{"title":"黄酮类化合物达芬-500®对毒死蜱诱导的成年雄性大鼠垂体和睾丸氧化变化的影响。","authors":"Aishat O Olatunji, Joseph O Ayo, Mohammed M Suleiman, Suleiman F Ambali, Muftau Shittu, Ganiu J Akorede, Lukman O Raji, Jamila A Atata, Khalid T Biobaku, Mistura O Azeez","doi":"10.1007/s43188-021-00120-2","DOIUrl":null,"url":null,"abstract":"<p><p>Alteration of redox status is one of the molecular pathways commonly associated with pesticide toxicity. Antioxidants, including those obtained from plant phenolics, have been shown to mitigate pesticide-induced cellular injury. The present study was aimed at evaluating the effect of daflon-500 <sup><b>®</b></sup> , a flavonoid compound on sub-chronic chlorpyriphos-evoked changes in antioxidant and biochemical parameters in the hypophysis and testes of adult male rats. Twenty-five male albino rats were randomly divided into 5 groups of 5 animals each. Group I (DW) received distilled water (2 ml/kg); group II (SO) was dosed with soya oil (2 ml/kg); Group III (DAF) received daflon-500 <sup><b>®</b></sup> at 1000 mg/kg <b>~</b> 1/5th of LD50 (≥ 5000 mg/kg); group IV (CP) was administered chlorpyriphos at 7.74 mg/kg <b>~</b> 1/10th of LD<sub>50</sub> (77.4 mg/kg) while group V (DAF + CP) was previously treated with daflon-500 <sup><b>®</b></sup> (1000 mg/kg) and then exposed to CP (7.74 mg/kg), 30 min later. Daily oral regimen administration was done for 60 days after which the animals were sacrificed by cervical venesection after light chloroform anesthesia. The hypophysis and testicular tissues were harvested, and their homogenates were analyzed for malondialdehyde, catalase and superoxide dismutase, and acetylcholinesterase levels. A significant increase in the hypophysis and testicular MDA concentrations, coupled with a decrease in the SOD, CAT, and AChE activities were observed in the CP group. The levels of these oxidative and biochemical parameters were alleviated in the group pretreated with Daflon-500 <sup><b>®</b></sup> . Results of this study demonstrated that pre-treatment with Daflon-500 <sup><b>®</b></sup> mitigated CP-induced alterations in oxidative and biochemical parameters apparently due to the antioxidant effect of the flavonoid compound.</p>","PeriodicalId":23181,"journal":{"name":"Toxicological Research","volume":"38 3","pages":"345-353"},"PeriodicalIF":1.6000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9247132/pdf/43188_2021_Article_120.pdf","citationCount":"0","resultStr":"{\"title\":\"Effect of daflon-500<sup>®</sup>, a flavonoid compound on chlorpyriphos-induced oxidative changes in the hypophysis and testes in adult male rats.\",\"authors\":\"Aishat O Olatunji, Joseph O Ayo, Mohammed M Suleiman, Suleiman F Ambali, Muftau Shittu, Ganiu J Akorede, Lukman O Raji, Jamila A Atata, Khalid T Biobaku, Mistura O Azeez\",\"doi\":\"10.1007/s43188-021-00120-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Alteration of redox status is one of the molecular pathways commonly associated with pesticide toxicity. Antioxidants, including those obtained from plant phenolics, have been shown to mitigate pesticide-induced cellular injury. The present study was aimed at evaluating the effect of daflon-500 <sup><b>®</b></sup> , a flavonoid compound on sub-chronic chlorpyriphos-evoked changes in antioxidant and biochemical parameters in the hypophysis and testes of adult male rats. Twenty-five male albino rats were randomly divided into 5 groups of 5 animals each. Group I (DW) received distilled water (2 ml/kg); group II (SO) was dosed with soya oil (2 ml/kg); Group III (DAF) received daflon-500 <sup><b>®</b></sup> at 1000 mg/kg <b>~</b> 1/5th of LD50 (≥ 5000 mg/kg); group IV (CP) was administered chlorpyriphos at 7.74 mg/kg <b>~</b> 1/10th of LD<sub>50</sub> (77.4 mg/kg) while group V (DAF + CP) was previously treated with daflon-500 <sup><b>®</b></sup> (1000 mg/kg) and then exposed to CP (7.74 mg/kg), 30 min later. Daily oral regimen administration was done for 60 days after which the animals were sacrificed by cervical venesection after light chloroform anesthesia. The hypophysis and testicular tissues were harvested, and their homogenates were analyzed for malondialdehyde, catalase and superoxide dismutase, and acetylcholinesterase levels. A significant increase in the hypophysis and testicular MDA concentrations, coupled with a decrease in the SOD, CAT, and AChE activities were observed in the CP group. The levels of these oxidative and biochemical parameters were alleviated in the group pretreated with Daflon-500 <sup><b>®</b></sup> . Results of this study demonstrated that pre-treatment with Daflon-500 <sup><b>®</b></sup> mitigated CP-induced alterations in oxidative and biochemical parameters apparently due to the antioxidant effect of the flavonoid compound.</p>\",\"PeriodicalId\":23181,\"journal\":{\"name\":\"Toxicological Research\",\"volume\":\"38 3\",\"pages\":\"345-353\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9247132/pdf/43188_2021_Article_120.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxicological Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s43188-021-00120-2\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicological Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s43188-021-00120-2","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TOXICOLOGY","Score":null,"Total":0}
Effect of daflon-500®, a flavonoid compound on chlorpyriphos-induced oxidative changes in the hypophysis and testes in adult male rats.
Alteration of redox status is one of the molecular pathways commonly associated with pesticide toxicity. Antioxidants, including those obtained from plant phenolics, have been shown to mitigate pesticide-induced cellular injury. The present study was aimed at evaluating the effect of daflon-500 ® , a flavonoid compound on sub-chronic chlorpyriphos-evoked changes in antioxidant and biochemical parameters in the hypophysis and testes of adult male rats. Twenty-five male albino rats were randomly divided into 5 groups of 5 animals each. Group I (DW) received distilled water (2 ml/kg); group II (SO) was dosed with soya oil (2 ml/kg); Group III (DAF) received daflon-500 ® at 1000 mg/kg ~ 1/5th of LD50 (≥ 5000 mg/kg); group IV (CP) was administered chlorpyriphos at 7.74 mg/kg ~ 1/10th of LD50 (77.4 mg/kg) while group V (DAF + CP) was previously treated with daflon-500 ® (1000 mg/kg) and then exposed to CP (7.74 mg/kg), 30 min later. Daily oral regimen administration was done for 60 days after which the animals were sacrificed by cervical venesection after light chloroform anesthesia. The hypophysis and testicular tissues were harvested, and their homogenates were analyzed for malondialdehyde, catalase and superoxide dismutase, and acetylcholinesterase levels. A significant increase in the hypophysis and testicular MDA concentrations, coupled with a decrease in the SOD, CAT, and AChE activities were observed in the CP group. The levels of these oxidative and biochemical parameters were alleviated in the group pretreated with Daflon-500 ® . Results of this study demonstrated that pre-treatment with Daflon-500 ® mitigated CP-induced alterations in oxidative and biochemical parameters apparently due to the antioxidant effect of the flavonoid compound.
期刊介绍:
Toxicological Research is the official journal of the Korean Society of Toxicology. The journal covers all areas of Toxicological Research of chemicals, drugs and environmental agents affecting human and animals, which in turn impact public health. The journal’s mission is to disseminate scientific and technical information on diverse areas of toxicological research. Contributions by toxicologists, molecular biologists, geneticists, biochemists, pharmacologists, clinical researchers and epidemiologists with a global view on public health through toxicological research are welcome. Emphasis will be given to articles providing an understanding of the toxicological mechanisms affecting animal, human and public health. In the case of research articles using natural extracts, detailed information with respect to the origin, extraction method, chemical profiles, and characterization of standard compounds to ensure the reproducible pharmacological activity should be provided.