用拉曼光谱法无损评价杂草对漂白除草剂的反应。

IF 1.4 4区 农林科学 Q4 ENVIRONMENTAL SCIENCES
Filip Vranješ, Ilinka Pećinar, Sava Vrbničanin, Steva Lević, Danijela Šikuljak, Dragana Božić
{"title":"用拉曼光谱法无损评价杂草对漂白除草剂的反应。","authors":"Filip Vranješ,&nbsp;Ilinka Pećinar,&nbsp;Sava Vrbničanin,&nbsp;Steva Lević,&nbsp;Danijela Šikuljak,&nbsp;Dragana Božić","doi":"10.1080/03601234.2023.2220645","DOIUrl":null,"url":null,"abstract":"<p><p>The aim of our study was to evaluate the use of Raman spectroscopy for pre-diagnostic estimation of weed response to bleaching herbicides. Model plants were <i>Chenopodium album</i> and <i>Abutilon theophrasti</i> treated with mesotrione (120 g a.i. ha<sup>-1</sup>). Raman single-point measurements were taken 1, 2, 3, and 7 days after herbicide application from different points on the leaves. Principal component analysis (PCA) was carried out on data normalized by the highest intensity band at 1522 cm<sup>-1</sup> and using spectral region from 950 to 1650 cm<sup>-1</sup> comprising mainly contributions of carotenoids. The carotenoids by intensive band at ∼1522 cm<sup>-1</sup> and bands with lower intensity at ∼1155 and 1007 cm<sup>-1</sup> in treated plants were confirmed. According to PC1 (the first principal component) and PC2 (the second principal component), the highest intensity bands responsible for treatment differentiation in <i>C. album</i> could be assigned to chlorophyll, lignin, and carotenes. According to PC1 in <i>A. theophrasti</i> leaves the treatment differences could be observed 7 days after mesotrione treatment and PC2 gave a clear separation between all control and treated leaf samples. Raman spectroscopy may be a good complement to invasive analytical methods, in assessing the plant abiotic stress induced by bleaching herbicides.</p>","PeriodicalId":15720,"journal":{"name":"Journal of Environmental Science and Health Part B-pesticides Food Contaminants and Agricultural Wastes","volume":"58 5","pages":"436-447"},"PeriodicalIF":1.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-destructive estimation of weed response to bleaching herbicides by Raman spectroscopy.\",\"authors\":\"Filip Vranješ,&nbsp;Ilinka Pećinar,&nbsp;Sava Vrbničanin,&nbsp;Steva Lević,&nbsp;Danijela Šikuljak,&nbsp;Dragana Božić\",\"doi\":\"10.1080/03601234.2023.2220645\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The aim of our study was to evaluate the use of Raman spectroscopy for pre-diagnostic estimation of weed response to bleaching herbicides. Model plants were <i>Chenopodium album</i> and <i>Abutilon theophrasti</i> treated with mesotrione (120 g a.i. ha<sup>-1</sup>). Raman single-point measurements were taken 1, 2, 3, and 7 days after herbicide application from different points on the leaves. Principal component analysis (PCA) was carried out on data normalized by the highest intensity band at 1522 cm<sup>-1</sup> and using spectral region from 950 to 1650 cm<sup>-1</sup> comprising mainly contributions of carotenoids. The carotenoids by intensive band at ∼1522 cm<sup>-1</sup> and bands with lower intensity at ∼1155 and 1007 cm<sup>-1</sup> in treated plants were confirmed. According to PC1 (the first principal component) and PC2 (the second principal component), the highest intensity bands responsible for treatment differentiation in <i>C. album</i> could be assigned to chlorophyll, lignin, and carotenes. According to PC1 in <i>A. theophrasti</i> leaves the treatment differences could be observed 7 days after mesotrione treatment and PC2 gave a clear separation between all control and treated leaf samples. Raman spectroscopy may be a good complement to invasive analytical methods, in assessing the plant abiotic stress induced by bleaching herbicides.</p>\",\"PeriodicalId\":15720,\"journal\":{\"name\":\"Journal of Environmental Science and Health Part B-pesticides Food Contaminants and Agricultural Wastes\",\"volume\":\"58 5\",\"pages\":\"436-447\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Environmental Science and Health Part B-pesticides Food Contaminants and Agricultural Wastes\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1080/03601234.2023.2220645\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Science and Health Part B-pesticides Food Contaminants and Agricultural Wastes","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1080/03601234.2023.2220645","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

我们研究的目的是评估拉曼光谱在杂草对漂白除草剂反应的预诊断估计中的应用。模式植物为经甲氧三酮(120 g a.i. ha-1)处理的Chenopodium album和Abutilon theophrasti。在施用除草剂后1、2、3和7天,分别在叶片上的不同点进行拉曼单点测量。数据经1522 cm-1最高强度波段归一化,用950 ~ 1650 cm-1主要贡献类胡萝卜素的光谱区域进行主成分分析。在~ 1522 cm-1和~ 1155和1007 cm-1的较低强度波段,证实了处理植株的类胡萝卜素。根据PC1(第一主成分)和PC2(第二主成分)的谱带,绿皮草中叶绿素、木质素和胡萝卜素是负责处理分化的最高强度谱带。在美索三酮处理7 d后,茶牡荆叶片的PC1可以观察到处理差异,PC2在所有对照和处理叶片样品之间有明显的分离。拉曼光谱法可作为入侵分析方法的一个很好的补充,用于评估漂白除草剂引起的植物非生物胁迫。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-destructive estimation of weed response to bleaching herbicides by Raman spectroscopy.

The aim of our study was to evaluate the use of Raman spectroscopy for pre-diagnostic estimation of weed response to bleaching herbicides. Model plants were Chenopodium album and Abutilon theophrasti treated with mesotrione (120 g a.i. ha-1). Raman single-point measurements were taken 1, 2, 3, and 7 days after herbicide application from different points on the leaves. Principal component analysis (PCA) was carried out on data normalized by the highest intensity band at 1522 cm-1 and using spectral region from 950 to 1650 cm-1 comprising mainly contributions of carotenoids. The carotenoids by intensive band at ∼1522 cm-1 and bands with lower intensity at ∼1155 and 1007 cm-1 in treated plants were confirmed. According to PC1 (the first principal component) and PC2 (the second principal component), the highest intensity bands responsible for treatment differentiation in C. album could be assigned to chlorophyll, lignin, and carotenes. According to PC1 in A. theophrasti leaves the treatment differences could be observed 7 days after mesotrione treatment and PC2 gave a clear separation between all control and treated leaf samples. Raman spectroscopy may be a good complement to invasive analytical methods, in assessing the plant abiotic stress induced by bleaching herbicides.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.00
自引率
5.00%
发文量
87
审稿时长
1 months
期刊介绍: 12 issues per year Abstracted/indexed in: Agricola; Analytical Abstracts; ASFA 3: Aquatic Pollution & Environmental Quality; BioSciences Information Service of Biological Abstracts (BIOSIS); CAB Abstracts; CAB AGBiotech News and Information; CAB Irrigation & Drainage Abstracts; CAB Soils & Fertilizers Abstracts; Chemical Abstracts Service Plus; CSA Aluminum Industry Abstracts; CSA ANTE: Abstracts in New Technology and Engineering; CSA ASFA 3 Aquatic Pollution and Environmental Quality; CSA ASSIA: Applied Social Sciences Index & Abstracts; CSA Ecology Abstracts; CSA Entomology Abstracts; CSA Environmental Engineering Abstracts; CSA Health & Safety Science Abstracts; CSA Pollution Abstracts; CSA Toxicology Abstracts; CSA Water Resource Abstracts; EBSCOhost Online Research Databases; Elsevier BIOBASE/Current Awareness in Biological Sciences; Elsevier Engineering Information: EMBASE/Excerpta Medica/ Engineering Index/COMPENDEX PLUS; Environment Abstracts; Environmental Knowledge; Food Science and Technology Abstracts; Geo Abstracts; Geobase; Food Science; Index Medicus/ MEDLINE; INIST-Pascal/ CNRS; NIOSHTIC; ISI BIOSIS Previews; Pesticides; Food Contaminants and Agricultural Wastes: Analytical Abstracts; Pollution Abstracts; PubSCIENCE; Reference Update; Research Alert; Science Citation Index Expanded (SCIE); and Water Resources Abstracts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信