蒽和苯的神经毒性包括氧化应激诱导的神经元损伤、胆碱能功能障碍以及单胺能和嘌呤能酶的破坏。

IF 1.6 4区 医学 Q4 TOXICOLOGY
Tosin A Olasehinde, Ademola O Olaniran
{"title":"蒽和苯的神经毒性包括氧化应激诱导的神经元损伤、胆碱能功能障碍以及单胺能和嘌呤能酶的破坏。","authors":"Tosin A Olasehinde,&nbsp;Ademola O Olaniran","doi":"10.1007/s43188-021-00115-z","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, the modulatory effects of anthracene (ANT) and benz[a]anthracene (BEN) on biochemical markers associated with neurodegeneration were assessed in mouse hippocampal neuronal cells (HT-22). Neuronal cells were cultured and exposed to ANT and BEN (25-125 µM) for 5 days, and the cell viability was determined via MTT assay. Morphological characteristics of the cells were assessed using a compound microscope. Biochemical parameters such as acetylcholinesterase (AChE), monoamine oxidase (MAO) and adenosine deaminase (ADA) activities as well as oxidative stress biomarkers (catalase [CAT], glutathione -S- transferase [GST] activities and Glutathione [GSH] levels) and nitric oxide [NO] levels were assessed after cells were treated with ANT and BEN for two days. The results showed that cell viability reduced with an increase in exposure time. After the fifth day of treatment, BEN and ANT (125 µM) reduced percentage viability to 41 and 38.1%, respectively. Light micrographs showed shrinkage of cells, neuronal injury and cell death in cells treated with higher concentrations of BEN and ANT (50 and 125 µM). Furthermore, AChE and MAO activities reduced significantly after treatment for 48 h with ANT and BEN. A significant decrease in CAT and GST activities and low GSH levels were observed after treatment with BEN and ANT. However, both polycyclic aromatic hydrocarbons caused a significant increase in ADA activity and NO levels. These results suggest that ANT and BEN may induce neurodegeneration in neuronal cells via oxidative stress-induced-neuronal injury, disruption of cholinergic, monoaminergic and purinergic transmission, and increased nitric oxide levels.</p>","PeriodicalId":23181,"journal":{"name":"Toxicological Research","volume":"38 3","pages":"365-377"},"PeriodicalIF":1.6000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9247130/pdf/43188_2021_Article_115.pdf","citationCount":"3","resultStr":"{\"title\":\"Neurotoxicity of anthracene and benz[a]anthracene involves oxidative stress-induced neuronal damage, cholinergic dysfunction and disruption of monoaminergic and purinergic enzymes.\",\"authors\":\"Tosin A Olasehinde,&nbsp;Ademola O Olaniran\",\"doi\":\"10.1007/s43188-021-00115-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this study, the modulatory effects of anthracene (ANT) and benz[a]anthracene (BEN) on biochemical markers associated with neurodegeneration were assessed in mouse hippocampal neuronal cells (HT-22). Neuronal cells were cultured and exposed to ANT and BEN (25-125 µM) for 5 days, and the cell viability was determined via MTT assay. Morphological characteristics of the cells were assessed using a compound microscope. Biochemical parameters such as acetylcholinesterase (AChE), monoamine oxidase (MAO) and adenosine deaminase (ADA) activities as well as oxidative stress biomarkers (catalase [CAT], glutathione -S- transferase [GST] activities and Glutathione [GSH] levels) and nitric oxide [NO] levels were assessed after cells were treated with ANT and BEN for two days. The results showed that cell viability reduced with an increase in exposure time. After the fifth day of treatment, BEN and ANT (125 µM) reduced percentage viability to 41 and 38.1%, respectively. Light micrographs showed shrinkage of cells, neuronal injury and cell death in cells treated with higher concentrations of BEN and ANT (50 and 125 µM). Furthermore, AChE and MAO activities reduced significantly after treatment for 48 h with ANT and BEN. A significant decrease in CAT and GST activities and low GSH levels were observed after treatment with BEN and ANT. However, both polycyclic aromatic hydrocarbons caused a significant increase in ADA activity and NO levels. These results suggest that ANT and BEN may induce neurodegeneration in neuronal cells via oxidative stress-induced-neuronal injury, disruption of cholinergic, monoaminergic and purinergic transmission, and increased nitric oxide levels.</p>\",\"PeriodicalId\":23181,\"journal\":{\"name\":\"Toxicological Research\",\"volume\":\"38 3\",\"pages\":\"365-377\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9247130/pdf/43188_2021_Article_115.pdf\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxicological Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s43188-021-00115-z\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicological Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s43188-021-00115-z","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 3

摘要

本研究在小鼠海马神经元细胞(HT-22)中评估了蒽(ANT)和苯并[a]蒽(BEN)对神经退行性变相关生化标志物的调节作用。培养神经元细胞,将其暴露于ANT和BEN(25-125µM)中5 d,通过MTT法测定细胞活力。用复合显微镜观察细胞的形态特征。结果表明,细胞活力随暴露时间的增加而降低。处理第5天后,BEN和ANT(125µM)使细胞存活率分别降至41%和38.1%。光镜显示,高浓度BEN和ANT(50和125µM)处理的细胞出现细胞萎缩、神经元损伤和细胞死亡。用BEN和ANT治疗后,观察到CAT和GST活性显著降低,GSH水平降低。然而,这两种多环芳烃均导致ADA活性和NO水平显著升高。这些结果表明,ANT和BEN可能通过氧化应激诱导的神经元损伤,破坏胆碱能、单胺能和嘌呤能的传递,以及增加一氧化氮水平来诱导神经元细胞的神经变性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Neurotoxicity of anthracene and benz[a]anthracene involves oxidative stress-induced neuronal damage, cholinergic dysfunction and disruption of monoaminergic and purinergic enzymes.

Neurotoxicity of anthracene and benz[a]anthracene involves oxidative stress-induced neuronal damage, cholinergic dysfunction and disruption of monoaminergic and purinergic enzymes.

Neurotoxicity of anthracene and benz[a]anthracene involves oxidative stress-induced neuronal damage, cholinergic dysfunction and disruption of monoaminergic and purinergic enzymes.

In this study, the modulatory effects of anthracene (ANT) and benz[a]anthracene (BEN) on biochemical markers associated with neurodegeneration were assessed in mouse hippocampal neuronal cells (HT-22). Neuronal cells were cultured and exposed to ANT and BEN (25-125 µM) for 5 days, and the cell viability was determined via MTT assay. Morphological characteristics of the cells were assessed using a compound microscope. Biochemical parameters such as acetylcholinesterase (AChE), monoamine oxidase (MAO) and adenosine deaminase (ADA) activities as well as oxidative stress biomarkers (catalase [CAT], glutathione -S- transferase [GST] activities and Glutathione [GSH] levels) and nitric oxide [NO] levels were assessed after cells were treated with ANT and BEN for two days. The results showed that cell viability reduced with an increase in exposure time. After the fifth day of treatment, BEN and ANT (125 µM) reduced percentage viability to 41 and 38.1%, respectively. Light micrographs showed shrinkage of cells, neuronal injury and cell death in cells treated with higher concentrations of BEN and ANT (50 and 125 µM). Furthermore, AChE and MAO activities reduced significantly after treatment for 48 h with ANT and BEN. A significant decrease in CAT and GST activities and low GSH levels were observed after treatment with BEN and ANT. However, both polycyclic aromatic hydrocarbons caused a significant increase in ADA activity and NO levels. These results suggest that ANT and BEN may induce neurodegeneration in neuronal cells via oxidative stress-induced-neuronal injury, disruption of cholinergic, monoaminergic and purinergic transmission, and increased nitric oxide levels.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.20
自引率
4.30%
发文量
39
期刊介绍: Toxicological Research is the official journal of the Korean Society of Toxicology. The journal covers all areas of Toxicological Research of chemicals, drugs and environmental agents affecting human and animals, which in turn impact public health. The journal’s mission is to disseminate scientific and technical information on diverse areas of toxicological research. Contributions by toxicologists, molecular biologists, geneticists, biochemists, pharmacologists, clinical researchers and epidemiologists with a global view on public health through toxicological research are welcome. Emphasis will be given to articles providing an understanding of the toxicological mechanisms affecting animal, human and public health. In the case of research articles using natural extracts, detailed information with respect to the origin, extraction method, chemical profiles, and characterization of standard compounds to ensure the reproducible pharmacological activity should be provided.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信