{"title":"气候变化影响人类大脑大小","authors":"Jeff Morgan Stibel","doi":"10.1159/000528710","DOIUrl":null,"url":null,"abstract":"<p><p>Brain size evolution in hominins constitutes a crucial evolutionary trend, yet the underlying mechanisms behind those changes are not well understood. Here, climate change is considered as an environmental factor using multiple paleoclimate records testing temperature, humidity, and precipitation against changes to brain size in 298 Homo specimens over the past fifty thousand years. Across regional and global paleoclimate records, brain size in Homo averaged significantly lower during periods of climate warming as compared to cooler periods. Geological epochs displayed similar patterns, with Holocene warming periods comprising significantly smaller brained individuals as compared to those living during glacial periods at the end of the Late Pleistocene. Testing spatiotemporal patterns, the adaptive response appears to have started roughly fifteen thousand years ago and may persist into modern times. To a smaller degree, humidity and precipitation levels were also predictive of brain size, with arid periods associated with greater brain size in Homo. The findings suggest an adaptive response to climate change in human brain size that is driven by natural selection in response to environmental stress.</p>","PeriodicalId":56328,"journal":{"name":"Brain Behavior and Evolution","volume":"98 2","pages":"93-106"},"PeriodicalIF":2.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10064386/pdf/","citationCount":"3","resultStr":"{\"title\":\"Climate Change Influences Brain Size in Humans.\",\"authors\":\"Jeff Morgan Stibel\",\"doi\":\"10.1159/000528710\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Brain size evolution in hominins constitutes a crucial evolutionary trend, yet the underlying mechanisms behind those changes are not well understood. Here, climate change is considered as an environmental factor using multiple paleoclimate records testing temperature, humidity, and precipitation against changes to brain size in 298 Homo specimens over the past fifty thousand years. Across regional and global paleoclimate records, brain size in Homo averaged significantly lower during periods of climate warming as compared to cooler periods. Geological epochs displayed similar patterns, with Holocene warming periods comprising significantly smaller brained individuals as compared to those living during glacial periods at the end of the Late Pleistocene. Testing spatiotemporal patterns, the adaptive response appears to have started roughly fifteen thousand years ago and may persist into modern times. To a smaller degree, humidity and precipitation levels were also predictive of brain size, with arid periods associated with greater brain size in Homo. The findings suggest an adaptive response to climate change in human brain size that is driven by natural selection in response to environmental stress.</p>\",\"PeriodicalId\":56328,\"journal\":{\"name\":\"Brain Behavior and Evolution\",\"volume\":\"98 2\",\"pages\":\"93-106\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10064386/pdf/\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain Behavior and Evolution\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1159/000528710\",\"RegionNum\":4,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BEHAVIORAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Behavior and Evolution","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1159/000528710","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
Brain size evolution in hominins constitutes a crucial evolutionary trend, yet the underlying mechanisms behind those changes are not well understood. Here, climate change is considered as an environmental factor using multiple paleoclimate records testing temperature, humidity, and precipitation against changes to brain size in 298 Homo specimens over the past fifty thousand years. Across regional and global paleoclimate records, brain size in Homo averaged significantly lower during periods of climate warming as compared to cooler periods. Geological epochs displayed similar patterns, with Holocene warming periods comprising significantly smaller brained individuals as compared to those living during glacial periods at the end of the Late Pleistocene. Testing spatiotemporal patterns, the adaptive response appears to have started roughly fifteen thousand years ago and may persist into modern times. To a smaller degree, humidity and precipitation levels were also predictive of brain size, with arid periods associated with greater brain size in Homo. The findings suggest an adaptive response to climate change in human brain size that is driven by natural selection in response to environmental stress.
期刊介绍:
''Brain, Behavior and Evolution'' is a journal with a loyal following, high standards, and a unique profile as the main outlet for the continuing scientific discourse on nervous system evolution. The journal publishes comparative neurobiological studies that focus on nervous system structure, function, or development in vertebrates as well as invertebrates. Approaches range from the molecular over the anatomical and physiological to the behavioral. Despite this diversity, most papers published in ''Brain, Behavior and Evolution'' include an evolutionary angle, at least in the discussion, and focus on neural mechanisms or phenomena. Some purely behavioral research may be within the journal’s scope, but the suitability of such manuscripts will be assessed on a case-by-case basis. The journal also publishes review articles that provide critical overviews of current topics in evolutionary neurobiology.