Asmaa H Rabie, Alaa M Mohamed, M A Abo-Elsoud, Ahmed I Saleh
{"title":"一种新的新冠肺炎诊断策略,使用改进的KNN分类器。","authors":"Asmaa H Rabie, Alaa M Mohamed, M A Abo-Elsoud, Ahmed I Saleh","doi":"10.1007/s00521-023-08588-9","DOIUrl":null,"url":null,"abstract":"<p><p>Covid-19 is a very dangerous disease as a result of the rapid and unprecedented spread of any previous disease. It is truly a crisis that threatens the world since its first appearance in December 2019 until our time. Due to the lack of a vaccine that has proved sufficiently effective so far, the rapid and more accurate diagnosis of this disease is extremely necessary to enable the medical staff to identify infected cases and isolate them from the rest to prevent further loss of life. In this paper, Covid-19 diagnostic strategy (CDS) as a new classification strategy that consists of two basic phases: Feature selection phase (FSP) and diagnosis phase (DP) has been introduced. During the first phase called FSP, the best set of features in laboratory test findings for Covid-19 patients will be selected using enhanced gray wolf optimization (EGWO). EGWO combines both types of selection techniques called wrapper and filter. Accordingly, EGWO includes two stages called filter stage (FS) and wrapper stage (WS). While FS uses many different filter methods, WS uses a wrapper method called binary gray wolf optimization (BGWO). The second phase called DP aims to give fast and more accurate diagnosis using a hybrid diagnosis methodology (HDM) based on the selected features from FSP. In fact, the HDM consists of two phases called weighting patient phase (WP<sup>2</sup>) and diagnostic patient phase (DP<sup>2</sup>). WP<sup>2</sup> aims to calculate the belonging degree of each patient in the testing dataset to class category using naïve Bayes (NB) as a weight method. On the other hand, K-nearest neighbor (KNN) will be used in DP<sup>2</sup> based on the weights of patients in the testing dataset as a new training dataset to give rapid and more accurate detection. The suggested CDS outperforms other strategies according to accuracy, precision, recall (or sensitivity) and F-measure calculations that are equal to 99%, 88%, 90% and 91%, respectively, as showed in experimental results.</p>","PeriodicalId":49766,"journal":{"name":"Neural Computing & Applications","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2023-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10153048/pdf/","citationCount":"0","resultStr":"{\"title\":\"A new Covid-19 diagnosis strategy using a modified KNN classifier.\",\"authors\":\"Asmaa H Rabie, Alaa M Mohamed, M A Abo-Elsoud, Ahmed I Saleh\",\"doi\":\"10.1007/s00521-023-08588-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Covid-19 is a very dangerous disease as a result of the rapid and unprecedented spread of any previous disease. It is truly a crisis that threatens the world since its first appearance in December 2019 until our time. Due to the lack of a vaccine that has proved sufficiently effective so far, the rapid and more accurate diagnosis of this disease is extremely necessary to enable the medical staff to identify infected cases and isolate them from the rest to prevent further loss of life. In this paper, Covid-19 diagnostic strategy (CDS) as a new classification strategy that consists of two basic phases: Feature selection phase (FSP) and diagnosis phase (DP) has been introduced. During the first phase called FSP, the best set of features in laboratory test findings for Covid-19 patients will be selected using enhanced gray wolf optimization (EGWO). EGWO combines both types of selection techniques called wrapper and filter. Accordingly, EGWO includes two stages called filter stage (FS) and wrapper stage (WS). While FS uses many different filter methods, WS uses a wrapper method called binary gray wolf optimization (BGWO). The second phase called DP aims to give fast and more accurate diagnosis using a hybrid diagnosis methodology (HDM) based on the selected features from FSP. In fact, the HDM consists of two phases called weighting patient phase (WP<sup>2</sup>) and diagnostic patient phase (DP<sup>2</sup>). WP<sup>2</sup> aims to calculate the belonging degree of each patient in the testing dataset to class category using naïve Bayes (NB) as a weight method. On the other hand, K-nearest neighbor (KNN) will be used in DP<sup>2</sup> based on the weights of patients in the testing dataset as a new training dataset to give rapid and more accurate detection. The suggested CDS outperforms other strategies according to accuracy, precision, recall (or sensitivity) and F-measure calculations that are equal to 99%, 88%, 90% and 91%, respectively, as showed in experimental results.</p>\",\"PeriodicalId\":49766,\"journal\":{\"name\":\"Neural Computing & Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2023-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10153048/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Computing & Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s00521-023-08588-9\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Computing & Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00521-023-08588-9","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
A new Covid-19 diagnosis strategy using a modified KNN classifier.
Covid-19 is a very dangerous disease as a result of the rapid and unprecedented spread of any previous disease. It is truly a crisis that threatens the world since its first appearance in December 2019 until our time. Due to the lack of a vaccine that has proved sufficiently effective so far, the rapid and more accurate diagnosis of this disease is extremely necessary to enable the medical staff to identify infected cases and isolate them from the rest to prevent further loss of life. In this paper, Covid-19 diagnostic strategy (CDS) as a new classification strategy that consists of two basic phases: Feature selection phase (FSP) and diagnosis phase (DP) has been introduced. During the first phase called FSP, the best set of features in laboratory test findings for Covid-19 patients will be selected using enhanced gray wolf optimization (EGWO). EGWO combines both types of selection techniques called wrapper and filter. Accordingly, EGWO includes two stages called filter stage (FS) and wrapper stage (WS). While FS uses many different filter methods, WS uses a wrapper method called binary gray wolf optimization (BGWO). The second phase called DP aims to give fast and more accurate diagnosis using a hybrid diagnosis methodology (HDM) based on the selected features from FSP. In fact, the HDM consists of two phases called weighting patient phase (WP2) and diagnostic patient phase (DP2). WP2 aims to calculate the belonging degree of each patient in the testing dataset to class category using naïve Bayes (NB) as a weight method. On the other hand, K-nearest neighbor (KNN) will be used in DP2 based on the weights of patients in the testing dataset as a new training dataset to give rapid and more accurate detection. The suggested CDS outperforms other strategies according to accuracy, precision, recall (or sensitivity) and F-measure calculations that are equal to 99%, 88%, 90% and 91%, respectively, as showed in experimental results.
期刊介绍:
Neural Computing & Applications is an international journal which publishes original research and other information in the field of practical applications of neural computing and related techniques such as genetic algorithms, fuzzy logic and neuro-fuzzy systems.
All items relevant to building practical systems are within its scope, including but not limited to:
-adaptive computing-
algorithms-
applicable neural networks theory-
applied statistics-
architectures-
artificial intelligence-
benchmarks-
case histories of innovative applications-
fuzzy logic-
genetic algorithms-
hardware implementations-
hybrid intelligent systems-
intelligent agents-
intelligent control systems-
intelligent diagnostics-
intelligent forecasting-
machine learning-
neural networks-
neuro-fuzzy systems-
pattern recognition-
performance measures-
self-learning systems-
software simulations-
supervised and unsupervised learning methods-
system engineering and integration.
Featured contributions fall into several categories: Original Articles, Review Articles, Book Reviews and Announcements.