通过替换灵芝中的主要纤维素酶 CBH1,提高异源灵芝漆酶(LacA)的产量。

IF 3.2 4区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Jiaxin Zhang, Yu Hong, Kehang Li, Yu Sun, Cheng Yao, Jianya Ling, Yaohua Zhong
{"title":"通过替换灵芝中的主要纤维素酶 CBH1,提高异源灵芝漆酶(LacA)的产量。","authors":"Jiaxin Zhang, Yu Hong, Kehang Li, Yu Sun, Cheng Yao, Jianya Ling, Yaohua Zhong","doi":"10.1093/jimb/kuad002","DOIUrl":null,"url":null,"abstract":"<p><p>The laccases from white-rot fungi exhibit high redox potential in treating phenolic compounds. However, their application in commercial purposes has been limited because of the relatively low productivity of the native hosts. Here, the laccase A-encoding gene lacA of Trametes sp. AH28-2 was overexpressed under the control of the strong promoter of cbh1 (Pcbh1), the gene encoding the endogenous cellobiohydrolase 1 (CBH1), in the industrial workhorse fungus Trichoderma reesei. Firstly, the lacA expression cassette was randomly integrated into the T. reesei chromosome by genetic transformation. The lacA gene was successfully transcribed, but the laccase couldn't be detected in the liquid fermentation condition. Meanwhile, it was found that the endoplasmic reticulum-associated degradation (ERAD) was strongly activated, indicating that the expression of LacA probably triggered intense endoplasmic reticulum (ER) stress. Subsequently, the lacA expression cassette was added with the downstream region of cbh1 (Tcbh1) to construct the new expression cassette lacA::Δcbh1, which could replace the cbh1 locus in the genome via homologous recombination. After genetic transformation, the lacA gene was integrated into the cbh1 locus and transcribed. And the unfolded protein response (UPR) and ERAD were only slightly induced, for which the loss of endogenous cellulase CBH1 released the pressure of secretion. Finally, the maximum laccase activity of 168.3 U/l was obtained in the fermentation broth. These results demonstrated that the reduction of secretion pressure by deletion of endogenous protein-encoding genes would be an efficient strategy for the secretion of heterologous target proteins in industrial fungi.</p><p><strong>One-sentence summary: </strong>The reduction of the secretion pressure by deletion of the endogenous cbh1 gene can contribute to heterologous expression of the laccase (LacA) from Trametes sp. AH28-2 in Trichoderma reesei.</p>","PeriodicalId":16092,"journal":{"name":"Journal of Industrial Microbiology & Biotechnology","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2023-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/d4/e5/kuad002.PMC10124127.pdf","citationCount":"0","resultStr":"{\"title\":\"Enhancing the production of a heterologous Trametes laccase (LacA) by replacement of the major cellulase CBH1 in Trichoderma reesei.\",\"authors\":\"Jiaxin Zhang, Yu Hong, Kehang Li, Yu Sun, Cheng Yao, Jianya Ling, Yaohua Zhong\",\"doi\":\"10.1093/jimb/kuad002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The laccases from white-rot fungi exhibit high redox potential in treating phenolic compounds. However, their application in commercial purposes has been limited because of the relatively low productivity of the native hosts. Here, the laccase A-encoding gene lacA of Trametes sp. AH28-2 was overexpressed under the control of the strong promoter of cbh1 (Pcbh1), the gene encoding the endogenous cellobiohydrolase 1 (CBH1), in the industrial workhorse fungus Trichoderma reesei. Firstly, the lacA expression cassette was randomly integrated into the T. reesei chromosome by genetic transformation. The lacA gene was successfully transcribed, but the laccase couldn't be detected in the liquid fermentation condition. Meanwhile, it was found that the endoplasmic reticulum-associated degradation (ERAD) was strongly activated, indicating that the expression of LacA probably triggered intense endoplasmic reticulum (ER) stress. Subsequently, the lacA expression cassette was added with the downstream region of cbh1 (Tcbh1) to construct the new expression cassette lacA::Δcbh1, which could replace the cbh1 locus in the genome via homologous recombination. After genetic transformation, the lacA gene was integrated into the cbh1 locus and transcribed. And the unfolded protein response (UPR) and ERAD were only slightly induced, for which the loss of endogenous cellulase CBH1 released the pressure of secretion. Finally, the maximum laccase activity of 168.3 U/l was obtained in the fermentation broth. These results demonstrated that the reduction of secretion pressure by deletion of endogenous protein-encoding genes would be an efficient strategy for the secretion of heterologous target proteins in industrial fungi.</p><p><strong>One-sentence summary: </strong>The reduction of the secretion pressure by deletion of the endogenous cbh1 gene can contribute to heterologous expression of the laccase (LacA) from Trametes sp. AH28-2 in Trichoderma reesei.</p>\",\"PeriodicalId\":16092,\"journal\":{\"name\":\"Journal of Industrial Microbiology & Biotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/d4/e5/kuad002.PMC10124127.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Industrial Microbiology & Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1093/jimb/kuad002\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial Microbiology & Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/jimb/kuad002","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

白腐真菌的裂解酶在处理酚类化合物时具有很高的氧化还原潜力。然而,由于原生宿主的生产力相对较低,它们在商业上的应用受到了限制。在这里,在编码内源纤维生物水解酶 1(CBH1)的基因 cbh1(Pcbh1)的强启动子控制下,工业主力真菌雷氏毛霉 AH28-2 的漆酶 A 编码基因 lacA 被过表达。首先,通过基因转化将 lacA 表达盒随机整合到毛霉染色体中。lacA 基因转录成功,但在液体发酵条件下无法检测到漆酶。同时,研究发现内质网相关降解(ERAD)被强烈激活,这表明 LacA 的表达可能引发了强烈的内质网(ER)应激。随后,将 lacA 表达盒与 cbh1 的下游区域(Tcbh1)加在一起,构建了新的表达盒 lacA::Δcbh1,该表达盒可通过同源重组取代基因组中的 cbh1 基因座。基因转化后,lacA 基因整合到 cbh1 基因座并转录。而未折叠蛋白反应(UPR)和ERAD仅被轻微诱导,内源纤维素酶CBH1的缺失释放了分泌压力。最后,在发酵液中获得了 168.3 U/l 的最大漆酶活性。这些结果表明,通过删除内源蛋白编码基因来降低分泌压力将是工业真菌分泌异源目标蛋白的有效策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Enhancing the production of a heterologous Trametes laccase (LacA) by replacement of the major cellulase CBH1 in Trichoderma reesei.

Enhancing the production of a heterologous Trametes laccase (LacA) by replacement of the major cellulase CBH1 in Trichoderma reesei.

Enhancing the production of a heterologous Trametes laccase (LacA) by replacement of the major cellulase CBH1 in Trichoderma reesei.

Enhancing the production of a heterologous Trametes laccase (LacA) by replacement of the major cellulase CBH1 in Trichoderma reesei.

The laccases from white-rot fungi exhibit high redox potential in treating phenolic compounds. However, their application in commercial purposes has been limited because of the relatively low productivity of the native hosts. Here, the laccase A-encoding gene lacA of Trametes sp. AH28-2 was overexpressed under the control of the strong promoter of cbh1 (Pcbh1), the gene encoding the endogenous cellobiohydrolase 1 (CBH1), in the industrial workhorse fungus Trichoderma reesei. Firstly, the lacA expression cassette was randomly integrated into the T. reesei chromosome by genetic transformation. The lacA gene was successfully transcribed, but the laccase couldn't be detected in the liquid fermentation condition. Meanwhile, it was found that the endoplasmic reticulum-associated degradation (ERAD) was strongly activated, indicating that the expression of LacA probably triggered intense endoplasmic reticulum (ER) stress. Subsequently, the lacA expression cassette was added with the downstream region of cbh1 (Tcbh1) to construct the new expression cassette lacA::Δcbh1, which could replace the cbh1 locus in the genome via homologous recombination. After genetic transformation, the lacA gene was integrated into the cbh1 locus and transcribed. And the unfolded protein response (UPR) and ERAD were only slightly induced, for which the loss of endogenous cellulase CBH1 released the pressure of secretion. Finally, the maximum laccase activity of 168.3 U/l was obtained in the fermentation broth. These results demonstrated that the reduction of secretion pressure by deletion of endogenous protein-encoding genes would be an efficient strategy for the secretion of heterologous target proteins in industrial fungi.

One-sentence summary: The reduction of the secretion pressure by deletion of the endogenous cbh1 gene can contribute to heterologous expression of the laccase (LacA) from Trametes sp. AH28-2 in Trichoderma reesei.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Industrial Microbiology & Biotechnology
Journal of Industrial Microbiology & Biotechnology 工程技术-生物工程与应用微生物
CiteScore
7.70
自引率
0.00%
发文量
25
审稿时长
3 months
期刊介绍: The Journal of Industrial Microbiology and Biotechnology is an international journal which publishes papers describing original research, short communications, and critical reviews in the fields of biotechnology, fermentation and cell culture, biocatalysis, environmental microbiology, natural products discovery and biosynthesis, marine natural products, metabolic engineering, genomics, bioinformatics, food microbiology, and other areas of applied microbiology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信