木卫二飞船的磁场建模和可视化。

IF 9.1 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS
Space Science Reviews Pub Date : 2023-01-01 Epub Date: 2023-05-26 DOI:10.1007/s11214-023-00974-y
Corey J Cochrane, Neil Murphy, Carol A Raymond, John B Biersteker, Katherine Dang, Xianzhe Jia, Haje Korth, Pablo Narvaez, Jodie B Ream, Benjamin P Weiss
{"title":"木卫二飞船的磁场建模和可视化。","authors":"Corey J Cochrane, Neil Murphy, Carol A Raymond, John B Biersteker, Katherine Dang, Xianzhe Jia, Haje Korth, Pablo Narvaez, Jodie B Ream, Benjamin P Weiss","doi":"10.1007/s11214-023-00974-y","DOIUrl":null,"url":null,"abstract":"<p><p>The goal of NASA's Europa Clipper Mission is to investigate the habitability of the subsurface ocean within the Jovian moon Europa using a suite of ten investigations. The Europa Clipper Magnetometer (ECM) and Plasma Instrument for Magnetic Sounding (PIMS) investigations will be used in unison to characterize the thickness and electrical conductivity of Europa's subsurface ocean and the thickness of the ice shell by sensing the induced magnetic field, driven by the strong time-varying magnetic field of the Jovian environment. However, these measurements will be obscured by the magnetic field originating from the Europa Clipper spacecraft. In this work, a magnetic field model of the Europa Clipper spacecraft is presented, characterized with over 260 individual magnetic sources comprising various ferromagnetic and soft-magnetic materials, compensation magnets, solenoids, and dynamic electrical currents flowing within the spacecraft. This model is used to evaluate the magnetic field at arbitrary points around the spacecraft, notably at the locations of the three fluxgate magnetometer sensors and four Faraday cups which make up ECM and PIMS, respectively. The model is also used to evaluate the magnetic field uncertainty at these locations via a Monte Carlo approach. Furthermore, both linear and non-linear gradiometry fitting methods are presented to demonstrate the ability to reliably disentangle the spacecraft field from the ambient using an array of three fluxgate magnetometer sensors mounted along an 8.5-meter (m) long boom. The method is also shown to be useful for optimizing the locations of the magnetometer sensors along the boom. Finally, we illustrate how the model can be used to visualize the magnetic field lines of the spacecraft, thus providing very insightful information for each investigation.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s11214-023-00974-y.</p>","PeriodicalId":21902,"journal":{"name":"Space Science Reviews","volume":"219 4","pages":"34"},"PeriodicalIF":9.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10220138/pdf/","citationCount":"0","resultStr":"{\"title\":\"Magnetic Field Modeling and Visualization of the Europa Clipper Spacecraft.\",\"authors\":\"Corey J Cochrane, Neil Murphy, Carol A Raymond, John B Biersteker, Katherine Dang, Xianzhe Jia, Haje Korth, Pablo Narvaez, Jodie B Ream, Benjamin P Weiss\",\"doi\":\"10.1007/s11214-023-00974-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The goal of NASA's Europa Clipper Mission is to investigate the habitability of the subsurface ocean within the Jovian moon Europa using a suite of ten investigations. The Europa Clipper Magnetometer (ECM) and Plasma Instrument for Magnetic Sounding (PIMS) investigations will be used in unison to characterize the thickness and electrical conductivity of Europa's subsurface ocean and the thickness of the ice shell by sensing the induced magnetic field, driven by the strong time-varying magnetic field of the Jovian environment. However, these measurements will be obscured by the magnetic field originating from the Europa Clipper spacecraft. In this work, a magnetic field model of the Europa Clipper spacecraft is presented, characterized with over 260 individual magnetic sources comprising various ferromagnetic and soft-magnetic materials, compensation magnets, solenoids, and dynamic electrical currents flowing within the spacecraft. This model is used to evaluate the magnetic field at arbitrary points around the spacecraft, notably at the locations of the three fluxgate magnetometer sensors and four Faraday cups which make up ECM and PIMS, respectively. The model is also used to evaluate the magnetic field uncertainty at these locations via a Monte Carlo approach. Furthermore, both linear and non-linear gradiometry fitting methods are presented to demonstrate the ability to reliably disentangle the spacecraft field from the ambient using an array of three fluxgate magnetometer sensors mounted along an 8.5-meter (m) long boom. The method is also shown to be useful for optimizing the locations of the magnetometer sensors along the boom. Finally, we illustrate how the model can be used to visualize the magnetic field lines of the spacecraft, thus providing very insightful information for each investigation.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s11214-023-00974-y.</p>\",\"PeriodicalId\":21902,\"journal\":{\"name\":\"Space Science Reviews\",\"volume\":\"219 4\",\"pages\":\"34\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10220138/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Space Science Reviews\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1007/s11214-023-00974-y\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/5/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Space Science Reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1007/s11214-023-00974-y","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/5/26 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

美国国家航空航天局的木卫二快船任务的目标是通过一系列十项调查来调查木星卫星木卫二内地下海洋的宜居性。木卫二Clipper磁强计(ECM)和用于磁探测的等离子体仪器(PIMS)研究将协同使用,通过感应由木星环境的强时变磁场驱动的感应磁场,来表征木卫二地下海洋的厚度和电导率以及冰壳的厚度。然而,这些测量结果将被来自木卫二快船飞船的磁场所掩盖。在这项工作中,提出了Europa Clipper航天器的磁场模型,其特征是有260多个单独的磁源,包括各种铁磁和软磁材料、补偿磁体、螺线管和航天器内流动的动态电流。该模型用于评估航天器周围任意点的磁场,特别是分别构成ECM和PIMS的三个磁通门磁强计传感器和四个法拉第杯的位置。该模型还用于通过蒙特卡罗方法评估这些位置的磁场不确定性。此外,还提出了线性和非线性梯度测量拟合方法,以证明使用安装在8.5米长吊杆上的三个磁通门磁强计传感器阵列可靠地将航天器场与环境分离的能力。该方法还被证明可用于优化磁力计传感器沿吊臂的位置。最后,我们说明了如何使用该模型来可视化航天器的磁力线,从而为每次调查提供非常有见地的信息。补充信息:在线版本包含补充材料,可访问10.1007/s11214-023-00974-y。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Magnetic Field Modeling and Visualization of the Europa Clipper Spacecraft.

Magnetic Field Modeling and Visualization of the Europa Clipper Spacecraft.

Magnetic Field Modeling and Visualization of the Europa Clipper Spacecraft.

Magnetic Field Modeling and Visualization of the Europa Clipper Spacecraft.

The goal of NASA's Europa Clipper Mission is to investigate the habitability of the subsurface ocean within the Jovian moon Europa using a suite of ten investigations. The Europa Clipper Magnetometer (ECM) and Plasma Instrument for Magnetic Sounding (PIMS) investigations will be used in unison to characterize the thickness and electrical conductivity of Europa's subsurface ocean and the thickness of the ice shell by sensing the induced magnetic field, driven by the strong time-varying magnetic field of the Jovian environment. However, these measurements will be obscured by the magnetic field originating from the Europa Clipper spacecraft. In this work, a magnetic field model of the Europa Clipper spacecraft is presented, characterized with over 260 individual magnetic sources comprising various ferromagnetic and soft-magnetic materials, compensation magnets, solenoids, and dynamic electrical currents flowing within the spacecraft. This model is used to evaluate the magnetic field at arbitrary points around the spacecraft, notably at the locations of the three fluxgate magnetometer sensors and four Faraday cups which make up ECM and PIMS, respectively. The model is also used to evaluate the magnetic field uncertainty at these locations via a Monte Carlo approach. Furthermore, both linear and non-linear gradiometry fitting methods are presented to demonstrate the ability to reliably disentangle the spacecraft field from the ambient using an array of three fluxgate magnetometer sensors mounted along an 8.5-meter (m) long boom. The method is also shown to be useful for optimizing the locations of the magnetometer sensors along the boom. Finally, we illustrate how the model can be used to visualize the magnetic field lines of the spacecraft, thus providing very insightful information for each investigation.

Supplementary information: The online version contains supplementary material available at 10.1007/s11214-023-00974-y.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Space Science Reviews
Space Science Reviews 地学天文-天文与天体物理
CiteScore
19.70
自引率
3.90%
发文量
60
审稿时长
4-8 weeks
期刊介绍: Space Science Reviews (SSRv) stands as an international journal dedicated to scientific space research, offering a contemporary synthesis across various branches of space exploration. Emphasizing scientific outcomes and instruments, SSRv spans astrophysics, physics of planetary systems, solar physics, and the physics of magnetospheres & interplanetary matter. Beyond Topical Collections and invited Review Articles, Space Science Reviews welcomes unsolicited Review Articles and Special Communications. The latter encompass papers related to a prior topical volume/collection, report-type papers, or timely contributions addressing a robust combination of space science and technology. These papers succinctly summarize both the science and technology aspects of instruments or missions in a single publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信